por ELCIO GOMES DE SOUZA » Dom Ago 24, 2008 16:55
Resolvi o seguine exercicio:
Encontre a área limitada por y² e y= x+2.
Resolvi o exercicio da seguinte forma:
os pontos de inserção são ( -1,1) e (2,4)
A= integral ( de - 1 ate 2 ) de ( x² - x - 2 ) dx
A= x³/3 - x²/2 - 2x ) de -1 a 2
A = ( 8/3 - 2 - 4 ) - ( -1/3 - 1/2 + 2 ) = -9/2 = -4,5
Creio que a resposta esta errada gostaria que alguem tirasse a duvida
-
ELCIO GOMES DE SOUZA
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Ago 24, 2008 16:42
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
por admin » Dom Ago 24, 2008 19:43
Olá Elcio, boas-vindas!
ELCIO GOMES DE SOUZA escreveu:Encontre a área limitada por y² e y= x+2.
Aqui, pela sua tentativa de cálculo, acredito que você pretendia escrever:
Encontre a área limitada por

e

.
Você visualizou os gráficos das funções?
Repare que no domínio da região limitada, você precisa subtrair a integral da função que está por baixo.
Tente refazer o cálculo assim e comente qualquer dúvida.
Bons estudos!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por ELCIO GOMES DE SOUZA » Ter Ago 26, 2008 18:20
Fabio,
Fiz como orientou so que minha resposta persiste da um valor negativo, se eu enviar o meu desenvolvimento tem como voce me orientar onde q estou errando? Eu subtrai a integral que estava por baixo so que o resultado persiste, gostaria de saber qual o resultado final para que eu refaça o meu caminho.
-
ELCIO GOMES DE SOUZA
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Ago 24, 2008 16:42
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
por admin » Ter Ago 26, 2008 19:02
Olá Elcio!
Você pode enviar sim o seu desenvolvimento, inclusive recomendo.
Lembrando que apenas precisamos do "cálculo" para obtermos a área
sob a curva

, pois podemos obter a área sob a curva

, considerando o trapézio retângulo delimitado, veja:
E com a integral, subtraímos esta outra área:
Sendo assim, a diferença é a área procurada:
É claro que também podemos calcular a primeira área com integral, não há problema.
E como as duas funções são integráveis no intervalo, a integral da diferença é igual à diferença das integrais.
Portanto, as alternativas para obtermos a área

pedida são:
-calcular a área

do trapézio (apenas por geometria plana) e
subtrair do resultado o valor de

-analogamente, calcular a diferença:

-ou ainda, utilizando a propriedade da integral, calcular diretamente:

Cuidado com os sinais ao utilizar o Teorema Fundamental do Cálculo.
Aguardo suas tentativas.
Até mais!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral, área da região limitada.
por Maicon Simoes » Qui Abr 19, 2012 10:58
- 1 Respostas
- 1831 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 15:00
Cálculo: Limites, Derivadas e Integrais
-
- Área limitada pelas curvas
por Fernandobertolaccini » Qua Jul 23, 2014 22:02
- 0 Respostas
- 1065 Exibições
- Última mensagem por Fernandobertolaccini

Qua Jul 23, 2014 22:02
Cálculo: Limites, Derivadas e Integrais
-
- Área limitada pelas curvas
por Fernandobertolaccini » Qua Jul 23, 2014 22:04
- 1 Respostas
- 1415 Exibições
- Última mensagem por matmatco

Sáb Ago 09, 2014 12:15
Cálculo: Limites, Derivadas e Integrais
-
- Área de Região plana limitada por funções
por iarapassos » Qui Jan 03, 2013 18:52
- 1 Respostas
- 2575 Exibições
- Última mensagem por Russman

Qui Jan 03, 2013 20:16
Cálculo: Limites, Derivadas e Integrais
-
- Como encontrar a área limitada por duas funções?
por VenomForm » Qua Fev 27, 2013 15:09
- 2 Respostas
- 2772 Exibições
- Última mensagem por Russman

Qua Fev 27, 2013 19:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.