• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Desisti....

Desisti....

Mensagempor Thiagom » Ter Nov 02, 2010 17:54

Uma das coisas que mais me da raiva no ensino superior publico do brasil eh que: o aluno eh que tem que se virar pra aprender, pois professor so ensina o basicão e quando voce se depara com algo mais avançado voce fica todo bolado...

Enfim, meu professor de calculo passou um trabalho que eu to penando pra fazer, e tou vindo aqui como ultimo recurso antes deu desistir de novo dessa cadeira...

O limite eh o seguinte \lim_{x\rightarrow2}\frac{\sqrt[3]{5x-2}-2}{\sqrt[2]{x-1}-1} tentei multiplicar pelos conjugados, mas da sempre indeterminação, depois tenti multiplicar usando a formula dos cubos, mas mesmo assim anda da indeterminação no numerador... eu não sei mais o que fazer.... a ficha da como resultado: 5/6

Desculpem raiva, mas esse limite realmente me conseguiu tirar do sério...
Thiagom
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 02, 2010 17:36
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Desisti....

Mensagempor Neperiano » Ter Nov 02, 2010 18:16

Ola

Tem uma regra que se chama regra de L'hopital, quando de 0 emcima e 0 embaixo, voce deriva emcima e embaixo separadamente, talvez tenha que usar ela, tente uma vez.

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Desisti....

Mensagempor Thiagom » Ter Nov 02, 2010 18:54

esqueci de dizer, ele pede que nao use lhopital
Thiagom
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 02, 2010 17:36
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Desisti....

Mensagempor Moura » Ter Dez 14, 2010 11:55

L'hopital :y:

=> y=\sqrt[n]{u^m}

y=u^\frac{m}{n}

=> y` = \frac{m}{n}*u^\frac{m}{n}{}^{-1}*u`

\lim_{x\rightarrow2}\frac{\sqrt[3]{5x-2}-2}{\sqrt[]{x-1}-1}

\lim_{x\rightarrow2}\frac{((5x-2)^\frac{1}{3}-2)`}{((x-1)^\frac{1}{2}-1)`}=\lim_{x\rightarrow2}\frac{\frac{1}{3}(5x-2)^\frac{-2}{3}*5}{\frac{1}{2}(x-1)^\frac{-1}{2}*1}= \lim_{x\rightarrow2}\frac{\frac{1}{3}*\frac{1}{(5x-2)^\frac{2}{3}}*5}{\frac{1}{2}*\frac{1}{(x-1)^\frac{1}{2}}}=\lim_{x\rightarrow2}\frac{\frac{5}{3\sqrt[3]{(5x-2)^2}}}{\frac{1}{2  \sqrt[]{x-1}}}=

\frac{\frac{5}{3\sqrt[3]{(5*2-2)^2}}}{\frac{1}{2\sqrt[]{2-1}}}=\frac{\frac{5}{3\sqrt[3]{8^2}}}{\frac{1}{2\sqrt[]{1}}}=\frac{\frac{5}{3\sqrt[3]{64}}}{\frac{1}{2}}=\frac{\frac{5}{12}}{\frac{1}{2}}=\frac{5}{12}*2 = \frac{10}{12} = \frac{5}{6}
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Desisti....

Mensagempor MarceloFantini » Ter Dez 14, 2010 13:50

Moura, o rapaz pediu para resolver sem L'Hopital como regra do professor.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Desisti....

Mensagempor Moura » Ter Dez 14, 2010 16:40

Tudo bem, não serve p/ ele, mas pode ser útil p/ outra pessoa. :-D
P = NP
Moura
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Dez 13, 2010 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Desisti....

Mensagempor VtinxD » Sáb Dez 18, 2010 14:34

Tenho uma ideia espero que esteja certa...não sou um grande conhecedor de limites hehe mas gosto de limites que precisam apenas de manipulações algébricas.
\lim_{x\rightarrow2}=\frac{\sqrt[3]{5x-2}+\sqrt[3]{8}}{\sqrt[2]{x-1}-1}
Agora utilizando a formula dos cubos:
{a}^{3}-{b}^{3}=\left(a-b \right)\left({a}^{2}+ab+{b}^{2} \right).Sendo a=\sqrt[3]{5x-2} e b=\sqrt[3]{8} temos:
\frac{{\sqrt[3]{5x-2}}^{3}-{\sqrt[3]{8}}^{3}}{\left({(\sqrt[3]{5x-2})}^{2}+\sqrt[3]{5x-2}\sqrt[3]{8}+{(\sqrt[3]{8})}^{2} \right)}=\left(\sqrt[3]{5x-2}-\sqrt[3]{8} \right).Agora jogando no limite,conseguimos:
\lim_{x\rightarrow2}=\frac{\frac{{\sqrt[3]{5x-2}}^{3}-{\sqrt[3]{8}}^{3}}{\left({(\sqrt[3]{5x-2})}^{2}+\sqrt[3]{5x-2}\sqrt[3]{8}+{(\sqrt[3]{8})}^{2} \right)}}{\sqrt[2]{x-1}-1}.Arrumando um pouco:
\lim_{x\rightarrow2}=\frac{5(x-2)}{\left({(\sqrt[3]{5x-2})}^{2}+2\sqrt[3]{5x-2}+4 \right).(\sqrt[2]{x-1}-1)}.Agora multiplicando pelo "conjugado" em baixo e em cima:
\lim_{x\rightarrow2}=\frac{5(x-2)}{\left({(\sqrt[3]{5x-2})}^{2}+2\sqrt[3]{5x-2}+4 \right).(\sqrt[2]{x-1}-1)}.\frac{\sqrt[2]{x-1}+1}{\sqrt[2]{x-1}+1}\Rightarrow \lim_{x\rightarrow2}=\frac{5(x-2)(\sqrt[2]{x-1}+1)}{\left({(\sqrt[3]{5x-2})}^{2}+2\sqrt[3]{5x-2}+4 \right).(x-2)}.Cortando o (x-2),temos uma função em baixo que só possui raiz complexa e em cima uma que não vai dar zero quando for colocada igual a 2.
\lim_{x\rightarrow2}=\frac{5(\sqrt[2]{x-1}+1)}{\left({(\sqrt[3]{5x-2})}^{2}+2\sqrt[3]{5x-2}+4 \right).}=\frac{5(2)}{(4+4+4)}=\frac{5}{6}
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.