• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites exponenciais

Limites exponenciais

Mensagempor lunayanne » Dom Mar 07, 2010 00:15

Olá! Eu tenho um pouco de dificuldade com limites e gostaria de ajuda para resolver alguns:

\lim_{x\rightarrow2}\frac{{x}^{x}-4}{x-2}

\lim_{x\rightarrow1}({x}^{n}+{x}^{n-1}+...+-1)

\lim_{x\rightarrow1}\frac{1-\sqrt[3]{x}}{1-\sqrt[2]{x}}

Conto com a ajuda de vocÊs. Obrigada. :)
lunayanne
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Mar 06, 2010 23:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia elétrica
Andamento: cursando

Re: Limites exponenciais

Mensagempor ogoiD » Sáb Mar 27, 2010 23:07

Na primeira e terceira , é só voce fatorar e cancelar o divisor , depois substitui o valor
ogoiD
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Mar 22, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecanica
Andamento: cursando

Re: Limites exponenciais

Mensagempor lucas92 » Ter Abr 13, 2010 03:57

= \lim_{x\rightarrow1} \left(x+x^2+...+x^{n-1}+x^n \right) =
lunayanne escreveu:Olá! Eu tenho um pouco de dificuldade com limites e gostaria de ajuda para resolver alguns:

\lim_{x\rightarrow2}\frac{{x}^{x}-4}{x-2}

\lim_{x\rightarrow1}({x}^{n}+{x}^{n-1}+...+-1)

\lim_{x\rightarrow1}\frac{1-\sqrt[3]{x}}{1-\sqrt[2]{x}}

Conto com a ajuda de vocÊs. Obrigada. :)


A primeira, nem faço ideia de como se resolve.

A segunda, na verdade, é o limite da soma de n funções potências, observe:


\lim_{x\rightarrow1} \left(x^n+x^{n-1}+...+x^{n-\left(n-2 \right)}+x^{n-(n-1)}+x^{n-n}-1 \right) =

= \lim_{x\rightarrow1} \left(x^n+x^{n-1}+...+x^2+x+1-1 \right) =

= \lim_{x\rightarrow1} \left(x^n+x^{n-1}+...+x^2+x \right) =

= 1+1^2+...+1^{n-1}+1^n =

= 1+1+...+1+1

= n.1

= n.

Na terceira, aplicando o limite, dá "0/0". Então, devemos primeiro, transformar os radicais para que eles tenham o mesmo índice:

\lim_{x\rightarrow1} \frac{1-\sqrt[3]{x}}{1-\sqrt[2]{x}} = \lim_{x\rightarrow1} \frac{1-\sqrt[6]{x^2}}{1-\sqrt[6]{x^3}}

Vamos fazer uma mudança de variável. Fazendo \sqrt[6]{x} = k, temos que \sqrt[6]{x^2} = k^2 e \sqrt[6]{x^3} = k^3. E se x\rightarrow1, então k\rightarrow\sqrt[3]{1} = 1. Aí ficamos com:

\lim_{x\rightarrow1} \frac{1-\sqrt[6]{x^2}}{1-\sqrt[6]{x^3}} = \lim_{k\rightarrow1} \frac{1-k^2}{1-k^3}

Aplicando novamente o limite, continua ainda a indeterminação "0/0". Mas agora nós temos um limite do quociente entre duas funções polinomiais. E se k=1 zera o polinômio do numerador e do denominador, então esses polinômios são divisíveis por \left(k-1 \right). Logo, temos:

\lim_{k\rightarrow1} \frac{1-k^2}{1-k^3} = \lim_{k\rightarrow1} \frac{\left(k-1 \right)\left(-k-1 \right)}{\left(k-1 \right)\left(k^2+k+1 \right)} = \lim_{k\rightarrow1} \frac{-k-1}{k^2+k+1} = \frac{-1-1}{1^2+1+1} = \frac{-2}{3}.
lucas92
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Abr 09, 2010 06:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.