• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria

Geometria

Mensagempor RafahAparecida » Dom Out 14, 2012 21:31

Geometria
Os valores de 150º e 160º são indicados na figura a seguir.
aNEXO
Calcule o valor de 3x-2y+z:
(A) 180
(B) 190
(C) 200
(D) 210
Anexos
geometri.png
geometri.png (6.47 KiB) Exibido 1007 vezes
RafahAparecida
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Out 14, 2012 20:46
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Geometria

Mensagempor Vinicius_ » Seg Out 15, 2012 07:28

160° + 150º + z = 360º
z = 50º

160° + 150º + y = 360º
y = 50º

x + 50° + 50º = 180º
x = 80º

3x – 2y + z = 240º – 100º + 50º = 190º
Vinicius_
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 14, 2012 14:50
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.