• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Raio da Circunferência

Raio da Circunferência

Mensagempor maria cleide » Qua Ago 31, 2011 22:00

Um segmento AB de 8cm é perpendicular ao diâmetro CD de uma circonferência, tendo suas extremidades no diâmetro e na circunferência. O diâmetro fica, então, separado em dois segmentos cuja diferença entre eles é de 12 cm. Dessa forma, a medida do raio da circonferência é:
A-( )4cm
B-( )16cm
C-( )20cm
D-( )10cm
Anexos
digitalizar0006.jpg
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: Raio da Circunferência

Mensagempor Renato_RJ » Qui Set 01, 2011 01:54

Campeão, eu achei 10 cm como raio... Tem o gabarito para ver se acertei ?

Fiz o seguinte, se você reparar existe um triângulo ACD retângulo em A, pois como CD é o diâmetro do círculo então o ângulo  tem 90º. Logo, usando a
relação do triângulo que diz que o quadrado da altura é igual ao produto dos lados, temos:

AB^2 = CB \cdot BD \, \Rightarrow \, CB \cdot BD = 64

Mas o problema nos diz que a diferença entre CB e BD é de 12 cm, logo temos:

CB \cdot BD = 64 \, \Rightarrow \, CB = \frac{64}{BD}
CB - BD = 12

Substituindo CB na segunda equação temos:

\frac{64}{BD} - BD = 12 \, \Rightarrow \, 64 - BD^2 -12BD = 0

Cujas as raízes são: -16 e 4. Como estamos lidando com medidas métricas, logo -16 não nos serve, sobrando apenas BD = 4 cm, o que nos dá um CB = 16 cm, somando CB e BD para achar o diâmetro temos CB + BD = 20 cm => raio = 10 cm.

Se cometi algum erro, me perdoe...

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Raio da Circunferência

Mensagempor maria cleide » Qua Out 12, 2011 11:35

Está correto, obrigada.
Maria Cleide.
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59