• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[circunferência] Geometria Plana

[circunferência] Geometria Plana

Mensagempor claudia » Qui Ago 14, 2008 18:35

Como faço para colocar uma figura ( uma circunferência) aqui?
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor fabiosousa » Qui Ago 14, 2008 18:48

Olá. :y:
O site não gera as figuras, mas recomendo utilizar estes dois programas comentados aqui para construções geométricas e gráficos, no link também há dois exemplos, dentre outros pelo fórum:
viewtopic.php?f=118&t=289&p=741#p741

Com a figura salva em seu computador, na tela de postagem de novo tópico, adicione como anexo e a imagem aparecerá.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 881
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor claudia » Sex Ago 15, 2008 16:38

Fábio, não consegui colocar a figura aqui, então a enviei por e-mail. Teria como dar uma olhada e me dar umas dicas?
Obrigada, Claudia
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor fabiosousa » Sex Ago 15, 2008 17:01

Olá Cláudia.

Para anexar a figura:
anexar_arquivo.jpg


Selecione o arquivo salvo em seu computador:
anexar_arquivo2.jpg


Clique no botão "Adicionar um arquivo".


Após, você pode utilizar o botão "Prever" para confirmar como ficará sua mensagem.

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 881
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor claudia » Sex Ago 15, 2008 17:18

Dados sobre a circunferência: Sendo O o centro da circunferência de raio unitário, então x=BC vale?
Anexos

[O anexo não pode ser exibido, pois a extensão doc foi desativada pelo administrador.]

claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor fabiosousa » Sex Ago 15, 2008 17:26

Cláudia, como é um outro problema, vou dividir o tópico, criando um novo.
Anexei novo arquivo como "imagem", sendo assim, ela aparece diretamente:

claudia escreveu:Dados sobre a circunferência: Sendo O o centro da circunferência de raio unitário, então x=BC vale?

circunferencia2.jpg
circunferencia2.jpg (6.36 KiB) Exibido 4763 vezes


Sempre comente previamente suas tentativas de resolução.
Você também quis desenhar que o ângulo A\hat{C}B é reto?

Vamos conversando...
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 881
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor claudia » Sex Ago 15, 2008 18:18

Sim, e o arco AB = 150 e entre B e C= 30º
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor fabiosousa » Sex Ago 15, 2008 18:33

Cláudia, tente enviar uma figura completa com os dados informados.

E o que quer dizer com?
claudia escreveu:e entre B e C= 30º


Após completar a figura sem deixar dúvidas de interpretação, teremos então apenas o enunciado do problema. Em seguida, comente suas tentativas para que eu possa ajudá-la, ok? Lembre-se das regras do fórum. Tentar especificar a dúvida é importante.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 881
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor claudia » Sex Ago 15, 2008 20:31

Já enviei todos os dados que o problema deu. Os valores dos arcos fui eu que coloquei. O de 30º é o arco oposto ao ângulo de 15º. Não sei nem por onde começar.
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor claudia » Sex Ago 15, 2008 20:34

Estas questões que estou enviando são algumas das 300 questões resolvidas por mim, de uma apostila, e que não consegui resolver. Suas dicas estão me ajudando bastante.
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor fabiosousa » Sex Ago 15, 2008 21:57

Olá Cláudia, boa noite!

:idea: Dica:
Tente utilizar outro dado, o raio unitário.
Trace um raio, o segmento OB. Anote seu valor na figura.
Marque o ângulo B\hat{O}C.
Pense no triângulo retângulo BOC.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 881
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor claudia » Seg Ago 18, 2008 18:24

CONSEGUI!!!
Você é d+. Valeu!
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D