• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[circunferência] Geometria Plana

[circunferência] Geometria Plana

Mensagempor claudia » Qui Ago 14, 2008 18:35

Como faço para colocar uma figura ( uma circunferência) aqui?
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor fabiosousa » Qui Ago 14, 2008 18:48

Olá. :y:
O site não gera as figuras, mas recomendo utilizar estes dois programas comentados aqui para construções geométricas e gráficos, no link também há dois exemplos, dentre outros pelo fórum:
viewtopic.php?f=118&t=289&p=741#p741

Com a figura salva em seu computador, na tela de postagem de novo tópico, adicione como anexo e a imagem aparecerá.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 883
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor claudia » Sex Ago 15, 2008 16:38

Fábio, não consegui colocar a figura aqui, então a enviei por e-mail. Teria como dar uma olhada e me dar umas dicas?
Obrigada, Claudia
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor fabiosousa » Sex Ago 15, 2008 17:01

Olá Cláudia.

Para anexar a figura:
anexar_arquivo.jpg


Selecione o arquivo salvo em seu computador:
anexar_arquivo2.jpg


Clique no botão "Adicionar um arquivo".


Após, você pode utilizar o botão "Prever" para confirmar como ficará sua mensagem.

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 883
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor claudia » Sex Ago 15, 2008 17:18

Dados sobre a circunferência: Sendo O o centro da circunferência de raio unitário, então x=BC vale?
Anexos

[O anexo não pode ser exibido, pois a extensão doc foi desativada pelo administrador.]

claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor fabiosousa » Sex Ago 15, 2008 17:26

Cláudia, como é um outro problema, vou dividir o tópico, criando um novo.
Anexei novo arquivo como "imagem", sendo assim, ela aparece diretamente:

claudia escreveu:Dados sobre a circunferência: Sendo O o centro da circunferência de raio unitário, então x=BC vale?

circunferencia2.jpg
circunferencia2.jpg (6.36 KiB) Exibido 5338 vezes


Sempre comente previamente suas tentativas de resolução.
Você também quis desenhar que o ângulo A\hat{C}B é reto?

Vamos conversando...
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 883
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor claudia » Sex Ago 15, 2008 18:18

Sim, e o arco AB = 150 e entre B e C= 30º
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor fabiosousa » Sex Ago 15, 2008 18:33

Cláudia, tente enviar uma figura completa com os dados informados.

E o que quer dizer com?
claudia escreveu:e entre B e C= 30º


Após completar a figura sem deixar dúvidas de interpretação, teremos então apenas o enunciado do problema. Em seguida, comente suas tentativas para que eu possa ajudá-la, ok? Lembre-se das regras do fórum. Tentar especificar a dúvida é importante.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 883
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor claudia » Sex Ago 15, 2008 20:31

Já enviei todos os dados que o problema deu. Os valores dos arcos fui eu que coloquei. O de 30º é o arco oposto ao ângulo de 15º. Não sei nem por onde começar.
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor claudia » Sex Ago 15, 2008 20:34

Estas questões que estou enviando são algumas das 300 questões resolvidas por mim, de uma apostila, e que não consegui resolver. Suas dicas estão me ajudando bastante.
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor fabiosousa » Sex Ago 15, 2008 21:57

Olá Cláudia, boa noite!

:idea: Dica:
Tente utilizar outro dado, o raio unitário.
Trace um raio, o segmento OB. Anote seu valor na figura.
Marque o ângulo B\hat{O}C.
Pense no triângulo retângulo BOC.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 883
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [circunferência] Geometria Plana

Mensagempor claudia » Seg Ago 18, 2008 18:24

CONSEGUI!!!
Você é d+. Valeu!
claudia
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Ago 13, 2008 17:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: pré-vestibular
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.