• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duas questões de Geometria.

Duas questões de Geometria.

Mensagempor JoaoGabriel » Dom Set 26, 2010 09:34

Bom dia pessoal do Ajuda Matemática!
Venho por meio deste postar dois exercícios de geometria que não consegui resolver por completo. Desde já aprecio a ajuda.

[1º] (FUVEST-SP) Na figura a seguir, a reta r passa pelo ponto T = (0, 1) e é paralela ao eixo Ox. A semi-reta Ot forma um ângulo ? (alfa) com o semi-eixo Ox (0º<?<90º) e intercepta a circunferência trigonométrica e a reta r nos ponto A e B, respectivamente.

Figura: http://img689.imageshack.us/img689/4750/questo1p.jpg

Determine a área do triângulo ?TAB em função de ?.


[2º] (Cefet-MG) No triãngulo ABC, um segmento MN paralelo a BC divide o triângulo em duas regiões de mesma área, conforme a figura.

Figura: http://img816.imageshack.us/img816/1975/questo2.jpg

Calcule então a razão AM/AB.

Grato.
Avatar do usuário
JoaoGabriel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Ago 18, 2010 16:05
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudando para Engenharia Aeroespacial
Andamento: cursando

Re: Duas questões de Geometria.

Mensagempor Elcioschin » Dom Set 26, 2010 12:09

1) Na figura tem-se:

a) BT = cotg?

b) Distância de A ao eixo x = sen?

c) Altura do triângulo BTA em relação à base BT = 1 - sen?

Área doi triângulo BTA ----> S = cotg?*(1 - sen?)/2 ----> S = (cotg? - cos?)/2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Duas questões de Geometria.

Mensagempor JoaoGabriel » Dom Set 26, 2010 12:40

No livro não consta a resposta dessa maneira, mas creio que se transformar cotg ? em cos/sen e efetuar, encontre uma das respostas.

Eis as opções:

a) (1 - sen ?)/2 .cos ?

b) (1 - cos ?)/2 .sen ?

c) (1 - sen ?)/2 .tg ?

d) (1 - sen ?)/2 .cotg ?

e) (1 - sen?)/2 .sen ?

Talvez alguma opção se encaixe em seu cálculo.
Avatar do usuário
JoaoGabriel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Ago 18, 2010 16:05
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudando para Engenharia Aeroespacial
Andamento: cursando

Re: Duas questões de Geometria.

Mensagempor Elcioschin » Dom Set 26, 2010 13:55

Minha solução

cot?*(1 - sen?)/2 = (1/tg?)*(1 - sen?)/2 = (1 - sen?)/2*tg? ----> Alternativa C
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Duas questões de Geometria.

Mensagempor JoaoGabriel » Dom Set 26, 2010 14:49

Exato. Grato pela resolução, se puder resolva a 2º questão também :D
Avatar do usuário
JoaoGabriel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Ago 18, 2010 16:05
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudando para Engenharia Aeroespacial
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 17 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D