por rogerdbest » Qui Ago 05, 2010 17:02
Um terreno retangular com área de 192 m2 tem um dos lados
medindo 4 m a mais que o outro. Dentro desse terreno, foi
colocada uma cerca a 1 m dos lados do terreno, demarcando
assim uma área retangular menor, como mostra a figura sem
escala. A área demarcada é, em m2, igual a
(A) 132.
(B) 140.
(C) 156.
(D) 160.
(E) 184.
TENTEI DA SEGUINTE FORMA:
LADO X: x
LADO Y: x+4
como area é igual lado vezes lado então: x.(x+4)= 192
aplicando a distributiva
x(ao quadrado) + 4x = 192
aí empaquei:
-
rogerdbest
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Ago 05, 2010 16:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Jornalismo
- Andamento: formado
por Molina » Qui Ago 05, 2010 18:01
Boa tarde.
Fica difícil saber
qual é a área demarcada sem visualizar a figura. Tire uma foto ou scanneie que iremos te ajudar.
Bom estudo!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- calculo de área
por angeloka » Sáb Nov 13, 2010 22:41
- 1 Respostas
- 1886 Exibições
- Última mensagem por MarceloFantini

Dom Nov 14, 2010 00:18
Cálculo: Limites, Derivadas e Integrais
-
- calculo de área
por angeloka » Dom Nov 14, 2010 17:49
- 2 Respostas
- 2228 Exibições
- Última mensagem por Moura

Ter Dez 14, 2010 08:05
Cálculo: Limites, Derivadas e Integrais
-
- calculo de área
por angeloka » Dom Nov 14, 2010 18:56
- 2 Respostas
- 2295 Exibições
- Última mensagem por Moura

Ter Dez 14, 2010 01:00
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de area
por shantziu » Seg Set 05, 2011 16:57
- 1 Respostas
- 1402 Exibições
- Última mensagem por LuizAquino

Seg Set 05, 2011 21:49
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo da área
por matway » Sex Set 09, 2011 17:11
- 4 Respostas
- 1632 Exibições
- Última mensagem por matway

Sáb Set 10, 2011 11:03
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.