• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.proposto

exerc.proposto

Mensagempor adauto martins » Seg Set 30, 2019 14:28

(ita-instituto tecnologico da aeronautica-exame de admissao 1953)
partindo de um quadrado {q}_{1},cujo lado mede a metros,considere os quarados
{q}_{2},{q}_{3},{q}_{4},...,{q}_{n} tais que os vertices de cada quadrado sejam os pontos medios
do quadrado anterior.calcular entao,as somas das areas dos quadrados {q}_{1},{q}_{2},{q}_{3},{q}_{4},...,{q}_{n}.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 995
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor adauto martins » Seg Out 07, 2019 18:04

soluçao:
vamos tomar o lado de {q}_{1} de l\Rightarrow {A}_{{q}_{1}}={l}^{2}
o segundo quadrado {q}_{2},q.tera sua medida na metade do lado de {q}_{1}
tera entao lado {q}_{2}, {l}_{2}=l \sqrt[]{2}/2\Rightarrow {A}_{{q}_{2}}={l}^{2}/2
analogamente {q}_{3},{l}_{3}=l\sqrt[]{2}/4\Rightarrow {A}_{{q}_{3}}={l}^{2}/4
...e assim,sucessivamente,logo a soma S,sera:

S={l}^{2}+{l}^{2}/2+{l}^{2}/4+...+{l}^{2}/({2}^{n})

s={l}^{2}(1+1/2+1/4+...+1/({2}^{n}))

s={l}^{2}(1/(1-1/2))=2.{l}^{2}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 995
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor adauto martins » Qui Out 17, 2019 14:01

a soluçao apresentada dessa questao esta incorreta,pois as somas areas é finita,e eu usei para somas infinitas.
qdo eu tiver a soluçao correta,posto-a.se alguem souber a soluçao por favor,poste-a...
obrigado,adauto martins
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 995
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor adauto martins » Sex Out 25, 2019 18:05

correçao:
como disse anteriormente essa soma é finita,se consideramos a soma infinita a soluçao apresentada é correta,o raciocinio é o mesmo.entao vamos a soluçao correta dessa questao:
chegamos a soma:

S={l}^{2}(1+(1/2)+(1/4)+...+(1/{2}^{n}))

S={l}^{2}({(1/2)}^{n}-1/(1/2)-1)

S={l}^{2}(2.({2}^{n}-1)/({2}^{n})

S={l}^{2}({2}^{n}-1)/({2}^{n-1}))
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 995
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)