• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Será que esta relação geométrica esta errada?

Será que esta relação geométrica esta errada?

Mensagempor Guga1981 » Qua Ago 29, 2018 18:51

Boa tarde, senhores!
Estou lendo um artigo que trata dos três problemas clássicos gregos e, na parte que fala da máquina de Platão, me deparei com a suspeita de que a primeira relação
\frac{ON}{OB} = \frac{OC}{OM} está equivocada:

Screenshot_2018-08-29-17-21-11.png

Pela minha dedução o autor do artigo se enganou ao fazer a proporção dos triângulos MÔC e BÔN:
20180829_174722.jpg

A relação correta não seria:
\frac{ON}{OC} = \frac{OM}{OB}

O que vocês acham?
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Jan 18, 2015 13:27
Localização: São Vicente-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Será que esta relação geométrica esta errada?

Mensagempor Gebe » Qua Ago 29, 2018 19:45

A dedução do autor está correta.
Observe na sua figura a disposição dos angulos (que está certa).
A proporção é vista em relação aos angulos, portanto o segmento oposto ao angulo alpha, por exemplo, de um triangulo deve estar diretamente proporcional ao segmento oposto ao angulo alpha do outro triangulo.
A sua proporção ficou inversamente proporcional.
ex.: Segundo a proporção que você propõe, mantendo-se MOC sem alterações, se aumentarmos o comprimento ON, teriamos de diminuir OB para manter a proporção entre MOC e BON o que não aconteceria.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 152
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Será que esta relação geométrica esta errada?

Mensagempor Guga1981 » Sáb Set 01, 2018 01:08

Gebe escreveu:A dedução do autor está correta.
Observe na sua figura a disposição dos angulos (que está certa).
A proporção é vista em relação aos angulos, portanto o segmento oposto ao angulo alpha, por exemplo, de um triangulo deve estar diretamente proporcional ao segmento oposto ao angulo alpha do outro triangulo.
A sua proporção ficou inversamente proporcional.
ex.: Segundo a proporção que você propõe, mantendo-se MOC sem alterações, se aumentarmos o comprimento ON, teriamos de diminuir OB para manter a proporção entre MOC e BON o que não aconteceria.


Mas, olha, no primeiro triangulo (o OMC) o segmento oposto ao angulo alpha é o segmento OM enquanto que no segundo triangulo (o BON) o segmento oposto ao ângulo alpha é o OB. Não é um lado de um triângulo no numerador da fração e o outro lado correspondente no denominador? Se for isso, a fração fica: \frac{OM}{OB} e não \frac{ON}{OB}.
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Jan 18, 2015 13:27
Localização: São Vicente-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Será que esta relação geométrica esta errada?

Mensagempor Gebe » Sáb Set 01, 2018 15:25

Não é um lado de um triângulo no numerador da fração e o outro lado correspondente no denominador


Na verdade isso é mais uma dica/macete de como escrever a relação.
Podemos escrever de varias formas essa proporcionalidade:
-> ON/OB = OC/OM

-> ON/OC = OB/OM

-> OM/OB = OC/ON -> forma derivada da tua duvida

-> ON.OM = OC.OB

-> (ON.OM) / (OC.OB) = 1

-> 1/(ON.OM) = 1/(OC.OB)

E varias outras formas, tendo apenas que respeitar a proporcionalidade.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 152
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Será que esta relação geométrica esta errada?

Mensagempor Guga1981 » Sáb Set 01, 2018 22:18

Ah... eu não sabia que dava para relacionar a razão dos dois lados de um mesmo triângulo pelos dois lados de outro triângulo! Eu só havia aprendido a fazer a proporção de um lado do primeiro triângulo pelo lado correspondente do segundo triângulo igual a outro lado do primeiro sobre outro lado do segundo. Obrigado! Aprendi mais uma!
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Jan 18, 2015 13:27
Localização: São Vicente-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Será que esta relação geométrica esta errada?

Mensagempor Gebe » Sáb Set 01, 2018 22:27

:y:
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 152
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.


cron