• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como calcular a área do triângulo inscrito

Como calcular a área do triângulo inscrito

Mensagempor Guga1981 » Ter Mai 29, 2018 17:39

Amigos, estou resolvendo provas anteriores da univesp e me deparei com a questão abaixo.
Não consigo estabelecer um critério para calcular a altura do triangulo inscrito para daí calcular a sua área.
Sei somente que a resposta certa é a letra D porque, se considerar a altura do triangulo como o diâmetro da circunferência, o valor da área será 130 cm², mas como a altura é um pouquinho menor do que o diâmetro eu assinalei a opção D (125 cm²). Mas como calcular essa resposta com exatidão?
circunscrito.jpg
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Jan 18, 2015 13:27
Localização: São Vicente-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Como calcular a área do triângulo inscrito

Mensagempor DanielFerreira » Qui Mai 31, 2018 11:57

Olá Guga!

Note que:

- \mathsf{\overline{OA}} corresponde ao raio da circunferência, portanto, ele mede a metade do diâmetro;

- \mathsf{\overline{OC}} também é raio;

- \mathsf{\Delta OHC} é retângulo em \mathsf{H};


Desse modo, podes determinar a medida do cateto \mathsf{\overline{OH}}.

Qualquer dúvida, comente!!

Atentamente,

Daniel Ferreira.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Como calcular a área do triângulo inscrito

Mensagempor Guga1981 » Sex Jun 01, 2018 21:33

Muito bom!!!
Aí eu Calculo a altura de H até O fazendo:

13² = OH² + 5²
169 = oh² + 25
OH = \sqrt[2]{144}
OH = 12

E calculo a área do triângulo ABC como sendo

\frac{10. (12+13)}{2}
= 125 m²

Muito obrigado!
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Jan 18, 2015 13:27
Localização: São Vicente-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Como calcular a área do triângulo inscrito

Mensagempor Guga1981 » Sex Jun 01, 2018 21:35

Vocês poderiam por favor indicar um bom fórum de física?
Estou precisando tirar dúvidas de física e estou tendo dificuldades.
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Jan 18, 2015 13:27
Localização: São Vicente-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.