• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular a área da base sabendo a fração do volume total e

Calcular a área da base sabendo a fração do volume total e

Mensagempor macedo1967 » Qua Nov 29, 2017 11:18

Uma caixa d’água com formato interno de paralelepípedo reto retangular está com 25 mil litros de água, o que
corresponde a 2/5 de sua capacidade total. Sabendo-se que a parte interna dessa caixa tem altura de 5 metros, e
que sua base tem um dos lados com metade da medida do outro, é correto afirmar que o perímetro da referida
base, em metros, é igual a

(A) 10.
(B) 12,5.
(C) 15.
(D) 17,5.
(E) 20.
macedo1967
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qui Set 14, 2017 12:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Admnistração
Andamento: cursando

Re: Calcular a área da base sabendo a fração do volume total

Mensagempor AllanOliveira » Qui Dez 14, 2017 17:20

Sabemos que se 25000 l equivale a 2/5 da capacidade da caixa de água, então fazendo 25000 = 2/5, faz meio pelos extremos e obtém que a capacidade total da caixa de água é 62500l.
Devemos saber também que a medida da caixa de água vai ser dada em m³, e que 1m³ = 1000 litros, usando regra de 3 simples conseguimos perceber que o Volume da caixa de água é 62,5 m³.
Com essas informações vamos para a fórmula de volume de um paralelepípedo.

V= b.h b = base
h = altura
Os dois lados da base desse paralelepípedo são l e l/2, pois na questão foi dado que um dos lado era a metade do outro, então chamando um lado de l o outro será a metade dele, sendo assim l/2.
Então:

V=b.h
62,5 = l . l/2 . 5
62,5 = 5l²/2
2.62,5 = 5l²
125 = 5l²
125/5 = l²
\sqrt[]{25} = l
l = 5m

Então o perímetro da base é a soma de todos os lados, então temos que dois lados medem 5m e os outros dois lados medem a metade desse, portanto medindo 2,5m.
Somando todos os 4 lados temos: 5 + 5 + 2,5 + 2,5 = 15m
Portanto letra C
AllanOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Dez 14, 2017 17:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.