• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular a área da base sabendo a fração do volume total e

Calcular a área da base sabendo a fração do volume total e

Mensagempor macedo1967 » Qua Nov 29, 2017 11:18

Uma caixa d’água com formato interno de paralelepípedo reto retangular está com 25 mil litros de água, o que
corresponde a 2/5 de sua capacidade total. Sabendo-se que a parte interna dessa caixa tem altura de 5 metros, e
que sua base tem um dos lados com metade da medida do outro, é correto afirmar que o perímetro da referida
base, em metros, é igual a

(A) 10.
(B) 12,5.
(C) 15.
(D) 17,5.
(E) 20.
macedo1967
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qui Set 14, 2017 12:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Admnistração
Andamento: cursando

Re: Calcular a área da base sabendo a fração do volume total

Mensagempor AllanOliveira » Qui Dez 14, 2017 17:20

Sabemos que se 25000 l equivale a 2/5 da capacidade da caixa de água, então fazendo 25000 = 2/5, faz meio pelos extremos e obtém que a capacidade total da caixa de água é 62500l.
Devemos saber também que a medida da caixa de água vai ser dada em m³, e que 1m³ = 1000 litros, usando regra de 3 simples conseguimos perceber que o Volume da caixa de água é 62,5 m³.
Com essas informações vamos para a fórmula de volume de um paralelepípedo.

V= b.h b = base
h = altura
Os dois lados da base desse paralelepípedo são l e l/2, pois na questão foi dado que um dos lado era a metade do outro, então chamando um lado de l o outro será a metade dele, sendo assim l/2.
Então:

V=b.h
62,5 = l . l/2 . 5
62,5 = 5l²/2
2.62,5 = 5l²
125 = 5l²
125/5 = l²
\sqrt[]{25} = l
l = 5m

Então o perímetro da base é a soma de todos os lados, então temos que dois lados medem 5m e os outros dois lados medem a metade desse, portanto medindo 2,5m.
Somando todos os 4 lados temos: 5 + 5 + 2,5 + 2,5 = 15m
Portanto letra C
AllanOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Dez 14, 2017 17:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}