• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Circunferência inscrita numa secção circular

Circunferência inscrita numa secção circular

Mensagempor Guga1981 » Ter Out 17, 2017 19:14

Preciso de ajuda neste exercício:
Anexos
Screenshot_2017-10-17-18-56-24.png
Foto
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

Re: Circunferência inscrita numa secção circular

Mensagempor Guga1981 » Ter Out 17, 2017 19:16

Eu sei que tudo o que tange a circunferência forma 90 graus com o centro do círculo. E sei como calcular a área da secção circular através de regra de três.
Mas o que sei se resume nisto.
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}