• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Plana - Retângulo

Geometria Plana - Retângulo

Mensagempor Matheus Macedo » Ter Ago 29, 2017 20:31

No piso de um salão retangular foram usados 1200 tacos quadrados. Em outro salão retangular, cuja as dimensões são 2 vezes maiores que as dimensões do primeiro, quantos desses tacos devem ser usados?
Matheus Macedo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Ago 29, 2017 20:25
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Geometria Plana - Retângulo

Mensagempor DanielFerreira » Qua Ago 30, 2017 00:51

Matheus Macedo escreveu:No piso de um salão retangular foram usados 1200 tacos quadrados. Em outro salão retangular, cuja as dimensões são 2 vezes maiores que as dimensões do primeiro, quantos desses tacos devem ser usados?


Olá Matheus, seja bem-vindo!

Sejam \mathbf{x} a quantidade de tacos na horizontal do piso e \mathbf{y} a quantidade de tacos na vertical do piso. Então, pelo princípio multiplicativo, temos que:

\mathsf{x \cdot y = 1200}


Por conseguinte, consideramos outro salão cujas dimensões são: \mathbf{2x} e \mathbf{2y}. Com efeito,

\\ \mathsf{(2x) \cdot (2y) =} \\\\ \mathsf{(2 \cdot 2) \cdot (x \cdot y) =} \\\\ \mathsf{4 \cdot 1200 =} \\\\ \boxed{\mathsf{4800}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1665
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Geometria Plana - Retângulo

Mensagempor Matheus Macedo » Qua Ago 30, 2017 18:30

DanielFerreira escreveu:
Matheus Macedo escreveu:No piso de um salão retangular foram usados 1200 tacos quadrados. Em outro salão retangular, cuja as dimensões são 2 vezes maiores que as dimensões do primeiro, quantos desses tacos devem ser usados?


Olá Matheus, seja bem-vindo!

Sejam \mathbf{x} a quantidade de tacos na horizontal do piso e \mathbf{y} a quantidade de tacos na vertical do piso. Então, pelo princípio multiplicativo, temos que:

\mathsf{x \cdot y = 1200}


Por conseguinte, consideramos outro salão cujas dimensões são: \mathbf{2x} e \mathbf{2y}. Com efeito,

\\ \mathsf{(2x) \cdot (2y) =} \\\\ \mathsf{(2 \cdot 2) \cdot (x \cdot y) =} \\\\ \mathsf{4 \cdot 1200 =} \\\\ \boxed{\mathsf{4800}}


Obrigado pelas boas-vindas!!
E muito obrigado por me ajudar com essa questão; eu estava na dúvida se multiplicava 2x e 2y ou se apenas pegava os 1200 e multiplicava por 2.
Mais uma vez, obrigado.
Matheus Macedo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Ago 29, 2017 20:25
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Geometria Plana - Retângulo

Mensagempor DanielFerreira » Sex Set 01, 2017 22:05

Não há e quê!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1665
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.