por outro » Qua Fev 15, 2017 11:59
Como realizo essa questão?
Calcule ? e ? na figura
http://sketchtoy.com/67887058, sabendo que as
retas r e s são paralelas.
-
outro
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Fev 15, 2017 09:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistemas de Informação
- Andamento: formado
por 314159265 » Sáb Fev 18, 2017 10:45
Pegue aquele 3alfa e represente ele no ângulo oposto pelo vértice. Vai restar um triângulo com os seguintes ângulos: 20º, alfa, 3alfa. Como a soma é 180º, alfa = 40º.
Depois você deve fechar o triângulo superior entre as retas r e s. Faça alternos internos com o alfa lá de baixo, coloque o ângulo interno do 3alfa, que é 60º. Beta é justamente 60º + alfa = 100º.
-
314159265
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Seg Fev 13, 2017 02:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por outro » Ter Fev 21, 2017 17:30
Obrigado
-
outro
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Fev 15, 2017 09:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistemas de Informação
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Retas Paralelas
por Cleyson007 » Seg Mai 25, 2009 08:34
- 3 Respostas
- 4189 Exibições
- Última mensagem por Marcampucio

Seg Mai 25, 2009 19:53
Trigonometria
-
- retas paralelas
por Ana Maria da Silva » Ter Jun 18, 2013 11:37
- 0 Respostas
- 1111 Exibições
- Última mensagem por Ana Maria da Silva

Ter Jun 18, 2013 11:37
Geometria Plana
-
- Retas Paralelas - Ajuda
por bira19 » Dom Fev 19, 2012 16:21
- 1 Respostas
- 1350 Exibições
- Última mensagem por fraol

Dom Fev 19, 2012 21:59
Geometria Analítica
-
- retas paralelas e ortogonais ao plano
por ricardosanto » Sáb Dez 15, 2012 11:44
- 1 Respostas
- 1436 Exibições
- Última mensagem por young_jedi

Sáb Dez 15, 2012 20:26
Álgebra Linear
-
- [Retas Paralelas] Achar o valor de x
por Mayra Luna » Qui Fev 28, 2013 21:59
- 2 Respostas
- 1875 Exibições
- Última mensagem por Mayra Luna

Qui Fev 28, 2013 22:25
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.