• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculár área - Fórmula de Heron?

Calculár área - Fórmula de Heron?

Mensagempor Ariel » Qua Nov 16, 2016 13:56

Pessoal, calculei assim:
10+7+8/2 = 12,5

raiz de: 12,5(12,5-7)(12,5-8)(12,5-10)

raiz de: 12,5x4,5x5,5x2,5

733,4345 (em raiz)

27,810744

Minha dúvida é: errei ou acertei? Achei muito doido o resultado!
Anexos
exercicios03.jpg
Ariel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Dom Nov 09, 2014 16:33
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: Calculár área - Fórmula de Heron?

Mensagempor Jadiel Carlos » Qui Nov 17, 2016 03:19

Obs: Se esse 10 é a medida do lado do triangulo maior, então o valor da área é 35, pois a altura relativa a base é 7. Usando a formula da área usual chegamos nesse valor Portanto sua resposta não está certa.
Jadiel Carlos
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Nov 07, 2016 00:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando

Re: Calculár área - Fórmula de Heron?

Mensagempor Ariel » Qui Nov 17, 2016 09:24

Jadiel, obrigada pela resposta, mas a altura não é 7. Ela é um dos lados do triângulo!
Ariel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Dom Nov 09, 2014 16:33
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}