• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema de Geometria com resposta em porcentagem

Problema de Geometria com resposta em porcentagem

Mensagempor Macedo Junior » Sex Jul 22, 2016 12:20

Inst. Mais – Uma quadra de vôlei deve ter 18 metros de comprimento por 9 metros de largura, mas, para oferecer mais segurança aos jogadores, o administrador do ginásio a ser construído decidiu oferecer um espaço de 4 metros em cada um dos lados da quadra e de 6 metros em cada fundo da quadra de forma que o terreno necessário aumentou em relação ao estritamente necessário para a quadra oficial numa faixa:

(a) Inferior a 50%.
(b) Entre 20% e 100%.
(c) Entre 101% e 200%.
(d) Superior a 200%.


Segui o seguinte raciocínio:

P1 = 2 x (18 + 9)
P1 = 36 + 18
P1 = 54

P2 = 2 x [(18+4) + (9+6)]
P2 = 2 x [22 + 15]
P2 = 2 x 37
P2 = 74

Regra de três:

54 --- 100%
74 --- X

54X = 74 x 100
54X = 7400
X = 7400
54
X= 137,03 %

Assim a resposta seria a alternativa (c) Entre 101% e 200%.

Mas no gabarito desta questão, a resposta correta é a alternativa (d) Superior a 200%.

Desta forma preciso de ajuda para chegar ao resultado correto ou seja a alternativa (d) Superior a 200%.
Macedo Junior
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Jul 22, 2016 11:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Problema de Geometria com resposta em porcentagem

Mensagempor Daniel Bosi » Sex Jul 22, 2016 14:37

Boa tarde, Macedo.

Perceba que a partir do momento que a questão pede "de forma que o terreno necessário aumentou" estamos falando de um aumento de área. Dessa forma é necessário calcular a área da quadra oficial e comparar a área total com os aumentos.

A quadra oficial deve ter 18 x 9 metros. Multiplicando os dois valores significa que a área dessa quadra tem 162m².

A quadra será aumentada 4 metros em cada lado e 6 metros em cada fundo, então:

18+6+6 = 30 metros
9+4+4 = 17 metros

Então a área total deverá ser de 30 x 17 metros = 510m².

O aumento percentual de 162 para 510 é de 214,81%, ou seja, superior a 200%.

Qualquer dúvida volte a questionar.

Daniel
Daniel Bosi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Mai 16, 2016 21:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Problema de Geometria com resposta em porcentagem

Mensagempor Macedo Junior » Sex Jul 22, 2016 16:08

Perfeito Daniel,

Entendi o meu erro.


Muito Obrigado
Macedo Junior
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Jul 22, 2016 11:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D