• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema de Geometria com resposta em porcentagem

Problema de Geometria com resposta em porcentagem

Mensagempor Macedo Junior » Sex Jul 22, 2016 12:20

Inst. Mais – Uma quadra de vôlei deve ter 18 metros de comprimento por 9 metros de largura, mas, para oferecer mais segurança aos jogadores, o administrador do ginásio a ser construído decidiu oferecer um espaço de 4 metros em cada um dos lados da quadra e de 6 metros em cada fundo da quadra de forma que o terreno necessário aumentou em relação ao estritamente necessário para a quadra oficial numa faixa:

(a) Inferior a 50%.
(b) Entre 20% e 100%.
(c) Entre 101% e 200%.
(d) Superior a 200%.


Segui o seguinte raciocínio:

P1 = 2 x (18 + 9)
P1 = 36 + 18
P1 = 54

P2 = 2 x [(18+4) + (9+6)]
P2 = 2 x [22 + 15]
P2 = 2 x 37
P2 = 74

Regra de três:

54 --- 100%
74 --- X

54X = 74 x 100
54X = 7400
X = 7400
54
X= 137,03 %

Assim a resposta seria a alternativa (c) Entre 101% e 200%.

Mas no gabarito desta questão, a resposta correta é a alternativa (d) Superior a 200%.

Desta forma preciso de ajuda para chegar ao resultado correto ou seja a alternativa (d) Superior a 200%.
Macedo Junior
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Jul 22, 2016 11:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Problema de Geometria com resposta em porcentagem

Mensagempor Daniel Bosi » Sex Jul 22, 2016 14:37

Boa tarde, Macedo.

Perceba que a partir do momento que a questão pede "de forma que o terreno necessário aumentou" estamos falando de um aumento de área. Dessa forma é necessário calcular a área da quadra oficial e comparar a área total com os aumentos.

A quadra oficial deve ter 18 x 9 metros. Multiplicando os dois valores significa que a área dessa quadra tem 162m².

A quadra será aumentada 4 metros em cada lado e 6 metros em cada fundo, então:

18+6+6 = 30 metros
9+4+4 = 17 metros

Então a área total deverá ser de 30 x 17 metros = 510m².

O aumento percentual de 162 para 510 é de 214,81%, ou seja, superior a 200%.

Qualquer dúvida volte a questionar.

Daniel
Daniel Bosi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Mai 16, 2016 21:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Problema de Geometria com resposta em porcentagem

Mensagempor Macedo Junior » Sex Jul 22, 2016 16:08

Perfeito Daniel,

Entendi o meu erro.


Muito Obrigado
Macedo Junior
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Jul 22, 2016 11:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.


cron