• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Plana] Qual é o comprimento "D" desse hexágono

[Geometria Plana] Qual é o comprimento "D" desse hexágono

Mensagempor Marcosd » Qui Jan 28, 2016 15:24

Considere o seguinte hexágono regular onde foi traçado um segmento de comprimento d em seu interior: Imagem

Sabendo que a área deste hexágono é de 216 3 cm², é correto afirmar que o valor de “d” é igual a:

a)8 b)12 c)24 d)36
Marcosd
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jan 28, 2016 15:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Gastronomia
Andamento: cursando

Re: [Geometria Plana] Qual é o comprimento "D" desse hexágon

Mensagempor adauto martins » Sex Jan 29, 2016 10:36

CodeCogsEqn (1).gif
sol.
CodeCogsEqn (1).gif (2.61 KiB) Exibido 5371 vezes
a resposta q. mais se aproxc. é D=8
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Geometria Plana] Qual é o comprimento "D" desse hexágon

Mensagempor adauto martins » Sex Jan 29, 2016 11:52

uma correçao...
o D=9 q. calculei é um dos lados do hexagono regular...logo,
d=2.9=18...das opçoes apresentadas tanto b),qto c),ambas estao a 6cm de 18cm...nesse caso o problema nao pergunta qual o menor ou maior valor de d...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Geometria Plana] Qual é o comprimento "D" desse hexágon

Mensagempor DanielFerreira » Dom Jan 31, 2016 12:58

Prezados Marcos e Adauto, boa tarde!

No valor da área do hexágono regular não figurava a raiz quadrada de três...

Marcosd escreveu:Considere o seguinte hexágono regular onde foi traçado um segmento de comprimento d em seu interior:
Sabendo que a área deste hexágono é de 216?3 cm², é correto afirmar que o valor de “d” é igual a:

a)8 b)12 c)24 d)36


Marcos, o hexágono regular é formado por 6 triângulos equiláteros. Sabendo disso, podemos encontrar a área do triângulo e multiplicar o valor encontrado por 6.

Consideremos que o lado do triângulo seja "l" e a altura "h". Uma relação entre essas variáveis é obtida aplicando o Teorema de Pitágoras, veja:

l² = h² + (l/2)²
l² - l²/4 = h²
3l² = 4h²
h = (l?3)/2

Sabendo que a área de um triângulo qualquer é dada por: S = (base x altura)/2. Temos que:

S = (l . h)/2
S = [l . (l?3)/2]/2
S = (l²?3)/4

Multiplicando S por 6 teremos a área do hexágono regular. Daí,

S_{total} = 6 . S
216?3 = 6 . (l²?3)/4
6l²?3 = 864?3
l² = 144
l = 12 cm

Mas, assim como concluímos que o hexágono regular é formado por 6 triângulos equiláteros tiramos que D = 2l.

Por fim,

D = 2l
D = 2 . 12
D = 24 cm
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Geometria Plana] Qual é o comprimento "D" desse hexágon

Mensagempor adauto martins » Dom Jan 31, 2016 20:26

ah ta...entao S=216.(3)^1/2 e nao 216,3...blza,obrigado caro colega daniel...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?