• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Numeros complexos e geometria!

Numeros complexos e geometria!

Mensagempor Estela » Dom Mar 16, 2008 01:57

Assim o problema:
Um hexagono regular esta inscrito numa circunferencia de equação x²+y²=4 e um de seus vertices e o afixo de z=2i determine seus outros 5 vertices.
Eu pensei q cara aresta do hexagono valesse 4. Dai tentei aplicar o "4" na formula da distancia usando o vertice q conheço (0,2) e outro desconhecido (x,y)
Mas não regula com a resposta do exercicio e estou desesperada porque tnho um trabalho sobre isso!
Obrigada
Estela
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Mar 16, 2008 01:49
Área/Curso: Estudante
Andamento: cursando

Re: Numeros complexos e geometria!

Mensagempor fabiosousa » Dom Mar 16, 2008 03:27

Olá Estela, seja bem-vinda!

Sobre o que você pensou, considere o seguinte:
A equação da circunferência nos diz que o raio é 2.
E se a aresta do hexágono regular medisse 4, ele não caberia inscrito na circunferência de raio 2.

Estes passos ajudarão você a entender a solução:

Encontre o ângulo central do polígono regular, neste caso, um hexágono.
Sendo \alpha este ângulo, em radianos você pode encontrá-lo assim:
\alpha = \frac{2\pi}{6} = \frac{\pi}{3}

Ou, em graus:
\alpha = \frac{360^o}{6} = 60^o

Ou seja, como o raio da circunferência é 2, o primeiro argumento é que podemos dividir o hexágono em seis triângulos isósceles.
Mas, como \alpha = 60^o e a soma dos ângulos internos de todo triângulo é 180^o, segue que os demais ângulos internos também são 60^o, logo, cada triângulo é equilátero.

Após você desenhar ou pensar na figura, perceberá que então basta encontrar as distâncias h e c, pois assim terá as coordenadas do ponto V que é um vértice.
hexagono_regular.jpg
hexagono_regular.jpg (24.96 KiB) Exibido 3398 vezes


Você deverá encontrar que V = \left( \sqrt{3},1 \right).
Para calcular h, considere que é a altura do triângulo equilátero de lado 2.

E c, você pode obter por Pitágoras, ou simplesmente por simetria, pois a medida c é metade do lado do triângulo.



Enfim, após obter V acima, por simetria (reflexão nos eixos) você obtém os demais vértices do hexágono.

São todos eles, no sentido anti-horário:
\left( \sqrt{3},1 \right)

\left( 0,2 \right)

\left( -\sqrt{3},1 \right)

\left( -\sqrt{3},-1 \right)

\left( 0,-2 \right)

\left( \sqrt{3},-1 \right)


Espero ter ajudado!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 881
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Numeros complexos e geometria!

Mensagempor Estela » Dom Mar 16, 2008 20:11

Muitissimo obrigada Professor Fábio!
Agradeço imensamente a atenção!
Consegui compreender muito bem o exercício!
Obrigada mais uma vez!
Estela
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Mar 16, 2008 01:49
Área/Curso: Estudante
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D