"Na figura, sabe-se que AD = BD = BC; AB = AC."
(Talvez esteja faltando alguma informação na questão, porém, mesmo que isso ocorra, preciso discutir uma dúvida, ok?).
[img]http://img248.imageshack.us/img248/3271/triangulou.jpg
[/img]
Eu tenho me confundido com essas questões envolvendo triângulos isósceles... explicarei isso a partir da imagem acima.
B1 é igual a x porque AD = BD.
O ângulo C também é igual a X porque BD é igual a BC (análise do triângulo todo, o maior).
AB = AC, logo, B1 + B2 = C = x (aqui está a contradição! Como B1 é igual a X e B1 + B2 é igual a X também? É nisso que me confundo em triângulos isósceles, especialmente quando há triângulos menores dentro de maiores).


![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)