• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como calcular a área do triângulo inscrito

Como calcular a área do triângulo inscrito

Mensagempor Guga1981 » Ter Mai 29, 2018 17:39

Amigos, estou resolvendo provas anteriores da univesp e me deparei com a questão abaixo.
Não consigo estabelecer um critério para calcular a altura do triangulo inscrito para daí calcular a sua área.
Sei somente que a resposta certa é a letra D porque, se considerar a altura do triangulo como o diâmetro da circunferência, o valor da área será 130 cm², mas como a altura é um pouquinho menor do que o diâmetro eu assinalei a opção D (125 cm²). Mas como calcular essa resposta com exatidão?
circunscrito.jpg
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

Re: Como calcular a área do triângulo inscrito

Mensagempor DanielFerreira » Qui Mai 31, 2018 11:57

Olá Guga!

Note que:

- \mathsf{\overline{OA}} corresponde ao raio da circunferência, portanto, ele mede a metade do diâmetro;

- \mathsf{\overline{OC}} também é raio;

- \mathsf{\Delta OHC} é retângulo em \mathsf{H};


Desse modo, podes determinar a medida do cateto \mathsf{\overline{OH}}.

Qualquer dúvida, comente!!

Atentamente,

Daniel Ferreira.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1678
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Como calcular a área do triângulo inscrito

Mensagempor Guga1981 » Sex Jun 01, 2018 21:33

Muito bom!!!
Aí eu Calculo a altura de H até O fazendo:

13² = OH² + 5²
169 = oh² + 25
OH = \sqrt[2]{144}
OH = 12

E calculo a área do triângulo ABC como sendo

\frac{10. (12+13)}{2}
= 125 m²

Muito obrigado!
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

Re: Como calcular a área do triângulo inscrito

Mensagempor Guga1981 » Sex Jun 01, 2018 21:35

Vocês poderiam por favor indicar um bom fórum de física?
Estou precisando tirar dúvidas de física e estou tendo dificuldades.
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}