• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular a área da base sabendo a fração do volume total e

Calcular a área da base sabendo a fração do volume total e

Mensagempor macedo1967 » Qua Nov 29, 2017 11:18

Uma caixa d’água com formato interno de paralelepípedo reto retangular está com 25 mil litros de água, o que
corresponde a 2/5 de sua capacidade total. Sabendo-se que a parte interna dessa caixa tem altura de 5 metros, e
que sua base tem um dos lados com metade da medida do outro, é correto afirmar que o perímetro da referida
base, em metros, é igual a

(A) 10.
(B) 12,5.
(C) 15.
(D) 17,5.
(E) 20.
macedo1967
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qui Set 14, 2017 12:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Admnistração
Andamento: cursando

Re: Calcular a área da base sabendo a fração do volume total

Mensagempor AllanOliveira » Qui Dez 14, 2017 17:20

Sabemos que se 25000 l equivale a 2/5 da capacidade da caixa de água, então fazendo 25000 = 2/5, faz meio pelos extremos e obtém que a capacidade total da caixa de água é 62500l.
Devemos saber também que a medida da caixa de água vai ser dada em m³, e que 1m³ = 1000 litros, usando regra de 3 simples conseguimos perceber que o Volume da caixa de água é 62,5 m³.
Com essas informações vamos para a fórmula de volume de um paralelepípedo.

V= b.h b = base
h = altura
Os dois lados da base desse paralelepípedo são l e l/2, pois na questão foi dado que um dos lado era a metade do outro, então chamando um lado de l o outro será a metade dele, sendo assim l/2.
Então:

V=b.h
62,5 = l . l/2 . 5
62,5 = 5l²/2
2.62,5 = 5l²
125 = 5l²
125/5 = l²
\sqrt[]{25} = l
l = 5m

Então o perímetro da base é a soma de todos os lados, então temos que dois lados medem 5m e os outros dois lados medem a metade desse, portanto medindo 2,5m.
Somando todos os 4 lados temos: 5 + 5 + 2,5 + 2,5 = 15m
Portanto letra C
AllanOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Dez 14, 2017 17:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}