por my2009 » Qua Nov 25, 2015 22:50
No pentágono regular ABCDE, mostrado na figura, o ângulo ADB mede :
a) 30º
b) 36º
c) 45º
d) 60º
e) 72º
Si =(n-2). 180º
Si= (5-2).180º
Si= 540º
- Anexos
-

-
my2009
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mai 24, 2010 13:57
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Gebe » Ter Dez 08, 2015 03:51
Há algumas formas de pensar neste problema. Vou colocar duas delas.
1ª: Seguindo a regularidade do poligono sabemos que todos angulos internos valem 108º (no total de 540º como tu colocou). Agora, porque o poligono é regular, podemos afirmar que EDA , ADB e BDC são iguais. Por fim então temos que se estes 3 angulos são iguais e somados valem 108º, ADB vale 36º.
Este foi jeito mais "preguiçoso". A outra forma seria mostrar que de fato EDA e BDC valem 36º e disto constatar que ADB tambem vale 36º.
Para isso fazemos o seguinte:
1) desenhamos uma linha unindo BD (ou AD), temos um triangulo BCD.
2) Agora desenhamos um segmento unindo C e o ponto medio de BD. Porque o pentagono é regular sabemos que este segmento dividirá o triangulo BCD em dois triangulos retangulos com o angulo MCD igual a 54º (108/2). ["M" é o ponto medio de BD]
3) Do triangulo retangulo MCD conhecemos 2 dos 3 angulos. Para calcular o que falta basta achar o suplemento (MDCº + 90º + 54º = 180º). MDCº = 36º = BDCº
4) Fazendo os mesmos passos achamos que EDA vale tambem 36º. Logo ADBº + 36º + 36º = 108º --> ADBº = 36º
Espero ter ajudado, bons estudos!
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por my2009 » Sex Dez 11, 2015 12:41
Olá Gebe, agradeço muito a explicação e a paciência. Obrigada !
-
my2009
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mai 24, 2010 13:57
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Geometria Plana
por claudia » Qui Out 23, 2008 16:11
- 1 Respostas
- 8725 Exibições
- Última mensagem por admin

Ter Out 28, 2008 16:47
Geometria Plana
-
- Geometria plana
por Rayanne07 » Qua Jan 13, 2010 17:40
- 3 Respostas
- 4713 Exibições
- Última mensagem por Rayanne07

Sex Jan 15, 2010 10:46
Geometria Plana
-
- Geometria Plana
por MelvinMyster » Sex Ago 13, 2010 10:07
- 1 Respostas
- 4825 Exibições
- Última mensagem por alexandre32100

Sex Ago 13, 2010 13:15
Geometria Plana
-
- Geometria plana
por Paulo A G » Qua Jan 26, 2011 16:11
- 0 Respostas
- 2541 Exibições
- Última mensagem por Paulo A G

Qua Jan 26, 2011 16:11
Geometria Plana
-
- geometria plana
por Abner » Seg Jan 31, 2011 17:53
- 3 Respostas
- 3681 Exibições
- Última mensagem por Abner

Ter Fev 01, 2011 17:31
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.