por anapaulausp » Seg Jan 11, 2010 17:14
Por Favor ajudem-me, estou estudando para um concurso, mais não consegui, resolver esta questão.
Um triângulo tem por lados os mesmos de um quadrado cuja diagonal é 3?2 cm. A área desse
triângulo, em cm², vale...
Se puderem fazer passo a passo, para que eu possa entender, ficaria muito grata.
-
anapaulausp
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Nov 17, 2009 16:20
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Molina » Seg Jan 11, 2010 21:35
Boa noite, Ana Paula.
Você conseguiu entender o que o problema diz? Fiz um desenho para visualizar melhor:
Ele quer dizer que os lados dessas duas figuras são iguais e que a digonal (
em vermelho) vale

.
A fórmula da diagonal de um quadrado é dada por

.
Então substituindo (em D) o valor da diagonal que é dado no enunciado, você vai descobrir

e esse é o valor do lado do quadrado, consequentemente o valor do lado do triângulo também.
Sabendo o lado do triângulo você precisa descobrir a área do mesmo. Utilize a fórmula

, onde B é a base do triângulo (ou seja, é

}; e h é a altura do triângulo, que é dado por

Tente aí e informe se tiver alguma dúvida.
Bom estudo,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por anapaulausp » Ter Jan 12, 2010 11:43
Valeu!!!
Finalmente consegui resolver o problema.
um pouco complicado, mais deu certo.
Resposta: 4,5
Obrigada
-
anapaulausp
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Nov 17, 2009 16:20
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- geometria
por ehrefundini » Ter Abr 22, 2008 16:53
- 3 Respostas
- 7153 Exibições
- Última mensagem por admin

Qui Mai 01, 2008 15:57
Pedidos de Materiais
-
- geometria 2
por ehrefundini » Qua Mai 07, 2008 10:35
- 1 Respostas
- 5928 Exibições
- Última mensagem por admin

Qua Mai 07, 2008 10:59
Pedidos de Materiais
-
- Geometria
por rybb » Ter Ago 25, 2009 07:48
- 1 Respostas
- 2762 Exibições
- Última mensagem por Elcioschin

Seg Out 05, 2009 22:41
Trigonometria
-
- Geometria - help me?
por rybb » Ter Ago 25, 2009 07:55
- 3 Respostas
- 7168 Exibições
- Última mensagem por Molina

Qua Ago 26, 2009 23:18
Geometria
-
- geometria
por cristina » Qui Nov 19, 2009 07:05
- 0 Respostas
- 2390 Exibições
- Última mensagem por cristina

Qui Nov 19, 2009 07:05
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.