• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Triângulos] Pontos Notáveis

[Triângulos] Pontos Notáveis

Mensagempor Lais-Lima » Sáb Set 13, 2014 13:08

Na figura seguinte, sabe-se que AB = AD e que o ângulo ABC menos o ângulo ACB é 30°. Então o ângulo CBD é igual a:

Comecei o exercício tentando nomear os ângulos.
ABD = \alpha
ADB = \alpha
BAD = \beta
CDB = \alpha + \beta
CBD = \theta
BCD = \gamma

À partir daí estou tentando encontrar igualdades, mas não consigo resolver até o final. Por exemplo:

2\alpha + \beta = 180°
\alpha + \beta + \gamma + \theta = 180°
\alpha + \theta - \gamma = 30°


Alguém pode me ajudar?
Anexos
20140913_102252-1[1].jpg
Lais-Lima
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Set 13, 2014 12:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Triângulos] Pontos Notáveis

Mensagempor Pessoa Estranha » Dom Set 14, 2014 23:13

Olá!

Note que:

2\alpha + \beta = 180 \rightarrow \beta = 180 -2\alpha

Substituindo na segunda igualdade:

-\alpha + \gamma + \theta = 0

Daí, na terceira igualdade:

\gamma + \theta = \alpha \rightarrow \gamma + \theta + \theta - \gamma = 30 \rightarrow 2\theta = 30 \rightarrow \theta = 15

É este o resultado?

Entendeu?
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Triângulos] Pontos Notáveis

Mensagempor Lais-Lima » Seg Set 15, 2014 17:37

Isso! Entendi sim, obrigada! ;)
Lais-Lima
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Set 13, 2014 12:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59