por emsbp » Sáb Abr 06, 2013 16:34
Boa tarde. É dado a equação do plano

e o ponto P(-1;2;1). O exercício pede que determinemos as coordenadas do ponto T, pertencente ao plano

, e que está mais próximo do ponto P.
Sei que a distância mais próxima do ponto P terá de ser na perpendicular em relação a T. Comecei por pensar em formar o vetor TP, sendo T(x,y,z), mas a partir daí não estou a conseguir resolver.
Peço ajuda.
Obrigado!
-
emsbp
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Sex Mar 09, 2012 11:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática/Informática
- Andamento: formado
por temujin » Sáb Abr 06, 2013 17:55
Boa tarde.
Este vetor TP que vc tomou pode sempre ser decomposto em uma soma de 2 vetores: um paralelo ao vetor normal ao plano (que é a projeção ortogonal de TP sobre N) e outro paralelo ao próprio plano. A distância de P ao plano será, então, igual à norma da projeção ortogonal e é dada por:

Acho que com isto vc consegue prosseguir, certo?
-
temujin
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Qui Mar 14, 2013 15:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: formado
por Russman » Sáb Abr 06, 2013 18:42
O seu pensamento está correto.
Primeiro, você constrói o vetor

usando

e

.

.
Agora, como você disse, esse vetor deve ser perpendicular a qualquer vetor pertencente ao plano. Isto é, o vetor

tem de ser paralelo ao vetor normal ao plano que é obtido pelos coeficientes da equação do plano.

.
Ou seja, o produto vetorial

tem de ser nulo e , consequentemente, o vetor

é um múltiplo do próprio vetor normal. Mas não qualquer múltiplo. Note que o módulo de

é exatamente a distância(definida perpendicularmente ao plano) entre o plano e o ponto P. Sabemos que esta é dada por

que pode ser calculada uma vez que conhecemos o ponto P. Vou chamar essa distância de

.
Portanto,

e, assim,

de onde



Agora basta você isolar as coordenadas de T.
(:
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por emsbp » Dom Abr 07, 2013 16:37
Boa tarde.
Muito obrigado. Já percebi.
-
emsbp
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Sex Mar 09, 2012 11:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática/Informática
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Produto das coordenadas do ponto P.
por Lenin » Sex Mai 03, 2013 00:35
- 1 Respostas
- 1420 Exibições
- Última mensagem por young_jedi

Sáb Mai 04, 2013 00:42
Funções
-
- [Coordenadas de um ponto simetrico]
por lucasdemirand » Dom Set 01, 2013 11:40
- 1 Respostas
- 2295 Exibições
- Última mensagem por e8group

Ter Set 03, 2013 12:12
Álgebra Linear
-
- [Geometria Analítica] Vetores No Espaço
por felipe10 » Seg Mai 07, 2012 13:16
- 1 Respostas
- 5197 Exibições
- Última mensagem por LuizAquino

Seg Mai 07, 2012 18:55
Geometria Analítica
-
- Geometria Analitica// Coordenadas polares
por duduxo81 » Sex Nov 18, 2016 13:20
- 0 Respostas
- 2426 Exibições
- Última mensagem por duduxo81

Sex Nov 18, 2016 13:20
Geometria Analítica
-
- geometria no plano e espaço - exercicios ajuda
por mmartins » Seg Mai 03, 2010 08:22
- 0 Respostas
- 1732 Exibições
- Última mensagem por mmartins

Seg Mai 03, 2010 08:22
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.