• Anúncio Global
    Respostas
    Exibições
    Última mensagem

GEOMETRIA PLANA

GEOMETRIA PLANA

Mensagempor Biinha » Sex Fev 15, 2013 13:28

BOA TARDE!!
ABC é um triângulo no qual a bissetriz interna relativa ao ângulo  é igual ao lado AB e a bissetriz interna relativa ao ângulo C é igual ao lado AC.Calcule os ângulos do triângulo ABC,representando-os em graus, minutos e segundos.

OBRIGADA PELA ATENÇÃO !!
Biinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Fev 15, 2013 12:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: GEOMETRIA PLANA

Mensagempor Cleyson007 » Sex Fev 15, 2013 15:07

Repare que os triângulos ABE e ADC são isósceles. Por esse motivo os ângulos da base são congruentes!

Como a soma dos angulos internos de um triângulo é igual a 180º, podemos escrever:

? + 4? = 180
? + 2? = 180
(180 - 2?) + ? + ? = 180

Ah, lembre-se que 1º = 60' e 1' = 60".

Agora tente resolver e comente qualquer dúvida :y:

Att,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.