por Matheus Lacombe O » Sex Fev 10, 2012 16:08
-
Matheus Lacombe O
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Jun 03, 2011 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecânica
- Andamento: cursando
por LuizAquino » Dom Fev 12, 2012 15:09
Matheus Lacombe O escreveu:Um retângulo ABCD - de medidas 20cm x 15 cm - é cortado por uma linha diagonal do ponto a ao ponto A ao ponto D, de forma a gerar dois novos triangulos retângulos. Cada um destes dois triângulos retângulos é cortado por uma linha de altura da hipotenusa até o ângulo reto.

- imagemqrb.jpg (6.36 KiB) Exibido 7604 vezes
- O exercicío pede as medidas x e y.
Matheus Lacombe O escreveu:Dúvida:
- Na resolução do livro "Matémática paratodos 8º série" o resultado desta questão (37, cap 1) aparece como sendo: x=1,8 e y=1,4. Tentei resolver fazendo a semelhança de triangulos lado-por-lado mas também não consegui. Onde foi que eu errei?
Você não errou. Considerando a figura, o gabarito correto é x = 9 e y = 7.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Matheus Lacombe O » Qua Fev 15, 2012 22:37
Ufa! Obrigado. Acho que não estou maluco..
Abraços.
-
Matheus Lacombe O
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Jun 03, 2011 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecânica
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Plana] Semelhança de Triângulos
por vanessafey » Sáb Ago 27, 2011 23:50
- 4 Respostas
- 8083 Exibições
- Última mensagem por vanessafey

Dom Ago 28, 2011 01:59
Geometria Plana
-
- Geometria Plana: Triângulos
por GuiBernardo » Qui Mar 02, 2017 18:49
- 0 Respostas
- 15834 Exibições
- Última mensagem por GuiBernardo

Qui Mar 02, 2017 18:49
Desafios Difíceis
-
- Geometria Plana, triângulos
por FISMAQUI » Dom Abr 23, 2017 16:38
- 0 Respostas
- 11033 Exibições
- Última mensagem por FISMAQUI

Dom Abr 23, 2017 16:38
Geometria Plana
-
- [Geometria Plana] Triângulos isósceles
por DaviBahia » Sex Mar 22, 2013 13:23
- 2 Respostas
- 2743 Exibições
- Última mensagem por DaviBahia

Sáb Mar 23, 2013 06:16
Geometria Plana
-
- [Geometria Plana] Congruência de triângulos.
por Debora Bruna » Seg Jan 11, 2016 18:20
- 1 Respostas
- 3249 Exibições
- Última mensagem por DanielFerreira

Dom Fev 07, 2016 14:52
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.