• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida

Dúvida

Mensagempor Victor Corsetti » Sáb Dez 10, 2011 16:49

Como resolvo essa questão?

questaomat.JPG


Fiz a área do quadrado, que da 4. A área do quarto da circunferência, que da pi. Depois denominei a área EAB em 'y'. As áreas EAD e EBC em 'x'. A área EDC em 'z'. Como o problema quer o EDC, fiz um sistema, porém não deu certo. Fiz:

z = 4 - 2x - y
x = pi - z
y = 4 - pi - x

Resolvi o sistema por substituição, mas não deu certo, no final só deu z = z...

Valeu!!
Victor Corsetti
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Dez 10, 2011 16:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Dúvida

Mensagempor TheoFerraz » Sáb Dez 10, 2011 17:41

É simples... eu faria por outra abordagem que iria facilitar (ou não) as coisas.

vamos pelo basico! voce precisa da area de um triangulo... a formula mais boba pra essa area é a famosa Area = \frac{Base \times Altura}{2}

a base voce já sabe. é um lado do triangulo... agora a altura fica meio complicado... mas eu tenho um jeito!

- Na figura original construa um seguimento de reta que vá de D até E.
- Chame o angulo "D" de theta. (o angulo que esse seguimento faz com a base do triangulo)
- Agora, observe bem... a altura do triangulo será a progeção ortogonal desse seguimento na direção vertical. portanto Altura = 2 sin( \theta) esse 2 corresponde ao tamanho do seguimento ED que é o raio da circunferencia!

Otimo... agora só falta descobrir o angulo theta! tente descobri-lo... eu já pensei em alguns jeitos aqui... mas tente descobri-los sosinho.

Dica, uma reta traçada do pto E até a base do triangulo perpendicularmente, cortará a base em duas partes iguais.
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Dúvida

Mensagempor Victor Corsetti » Dom Dez 11, 2011 00:07

ba, perdi um tempao nessa questão, não prestei atençao que era só fazer um triangulo ali, que é equilatero, com lado 2. A resposta é A, raiz de 3. pensei que era pra descobrir a area do EDC.

valeu ai!
Victor Corsetti
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Dez 10, 2011 16:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.