• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração da razão aurea no pentagono.

Demonstração da razão aurea no pentagono.

Mensagempor benni » Dom Out 16, 2011 15:13

No anexo, esta a figura.gostaria de saber se a demonstração esta correta.
Os pontos de intersecção M,N,P,Q,R das diagonais determinam um segundo pentágono regular.Estudando a relação entre os dois pentágonos, os matemáticos da escola Pitagórica determinaram importantes propriedades,como já exposto anteriormente .Vamos mostrar que a razão entre a diagonal ( D ) e o lado ( L ) do pentágono é o numero de ouro.
Para , isto precisamos mostrar dois resultados:
1° - Os GAP e JGI são semelhantes.
2° - Os segmentos IP = GA = L
Do resultado 1 , obtemos a seguinte relação de proporcionalidade:
Observa-se que:
GA = JI = L
JG = D
GP = GI – IP = D – L
Ou seja : substituindo em temos:
como conseqüência , resulta: L² = D² - DL representando D/L = x ,para obtermos L² = (xL)² - xLL --> L² = x²L² - xL² --> 1 = x² - x --> x² - x -1 = 0 obtemos como raiz válida \frac{1+\sqrt[2]{5}}{2}
Provamos assim que D/L = é o numero áureo .
benni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Mar 02, 2011 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Demonstração da razão aurea no pentagono.

Mensagempor benni » Sex Out 21, 2011 16:51

Não estou conseguindo anexar a figura .Estou tentando novamente
benni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Mar 02, 2011 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Demonstração da razão aurea no pentagono.

Mensagempor benni » Sáb Out 22, 2011 13:14

O Pentagono regular é AGHIJ e o segundo pentagono(estrela) QRMNP.
benni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Mar 02, 2011 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?