• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida Exercício de Circunferência

Dúvida Exercício de Circunferência

Mensagempor ilovemat » Sex Abr 03, 2009 18:59

Oiii tenho uma dúvida em uma questão sobre circunferencia

-->A profundidade da água de um porto pode ser modelada por uma função trigométrica devido as oscilaçoes das máres oceanicas. Se a profundidade da água em um porto da costa brasileira é dada pela fórmula D (t)+ 2,7 Cos( \pi\frac{\pi}{}f6(x)=\int_{-\infty}^x e^{-t^2}dt\\frac{\pi6}{}t) + 4,5 onde D é a profundidade da água em metros e t é medida em horas após a primeira maré alta do dia . Um comandante deve decidir o hr. de atracamento do seu navio nesse porto , optando entre atracar 7 hr. ou 11 hr. ´pós a primeira maré alta do dia . Em qual desses dois horários ele teria a maior profundidade da agua ?

meus calculos :
D (t): 2,7 cos( \frac{\pi6}{}f(x)=\int_{-\infty}^x e^{-t^2}dtt} + 4,5

D(7)= 2,7 . cos 7. \frac{\pi6\frac{\pi6}{}}{}f(x)=\int_{-\infty}^x e^{-t^2}dt + 4,5

agora eu não sei mas o que fazer alguem me ajuda ???

Obrigada
ilovemat
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Fev 19, 2009 16:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso de Administração
Andamento: formado

Re: Dúvida Exercício de Circunferência

Mensagempor Marcampucio » Sex Abr 03, 2009 20:53

Não deu prá entender o que está escrito nos grafos matemáticos.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59