O problema é o seguinte:
"Considere um quadrado ABCD e os pontos E, F, K e L, pertencentes aos lados AB, BC, CD e AD, respectivamente,
tais que os segmentos EK e FL são perpendiculares. Mostre que EK = FL."
Basicamente, tento resolve-lo procurando triangulos semelhantes que provem essa equivalencia, mas mesmo prolongando retas e colocando seguimentos como EF e LK, não acho nenhuma semelhança eficiente.
Se alguem tiver alguma dica...
Agradeço desde já.

, obtemos os triângulos [GDL], [GAE], [GBF] e [GCK]. Todos estes triângulos são geometricamente iguais. Tente ver porquê, relembrando os critérios de igualdade de triângulos. Diga depois as conclusões das suas observações, ok? Se não conseguir justificar a igualdade, eu ajudo. E depois da igualdade é fácil concluir a resposta à questão. 
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)