por Alexander » Dom Abr 24, 2011 11:10
(EAM) Em uma sala retangular de piso plano nas dimensões 8,80m por 7,60m, deseja-se colocar lajotas quadradas iguais sem a necessidade de recortar qualquer peça. A medida máxima, em centímetros, do lado de cada lajota deverá ser igual a:
A: 10 B:20 C:30 D:40 E: 50
A única coisa que eu consegui fazer foi calcular a área do retângulo.
O que é lajota?????
Obrigado desde já!
"Se não puder se destacar pelo talento, vença pelo esforço." - Dave Weinbaum
-
Alexander
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Nov 24, 2010 23:10
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por LuizAquino » Dom Abr 24, 2011 12:59
O que é lajota?????
Não faz mal usar um dicionário!
http://aulete.uol.com.br/A sala, em centímetros, mede 880 por 760.
A dimensão da lajota (que é quadrada) deve ser de tal modo que dê para dividir exatamente 880 e 760. Desse modo, nesse exercício queremos determinar o m.d.c. entre 880 e 760, que dá 40.
Portanto, a lajota será um quadrado de lado 40 cm.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Alexander » Dom Abr 24, 2011 17:29
Meu Deus! Uma coisa simples dessa. Para mim era algo relacionado a geometria.
Obrigado!
Abraços!
"Se não puder se destacar pelo talento, vença pelo esforço." - Dave Weinbaum
-
Alexander
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Nov 24, 2010 23:10
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [raíz quadrada] Dificuldade com raízes quadradas..
por lucas7 » Ter Ago 30, 2011 21:39
- 5 Respostas
- 3122 Exibições
- Última mensagem por lucas7

Qua Ago 31, 2011 15:18
Conversão de Unidades
-
- Calculos envolvendo triângulo retângulo e retângulo
por andersontricordiano » Seg Abr 18, 2011 02:29
- 1 Respostas
- 4041 Exibições
- Última mensagem por MarceloFantini

Seg Abr 18, 2011 04:19
Progressões
-
- Retângulo
por Roberta » Qui Jun 19, 2008 18:07
- 8 Respostas
- 10008 Exibições
- Última mensagem por MarceloFantini

Ter Jan 05, 2010 23:37
Geometria Plana
-
- Retângulo
por Pri Ferreira » Qua Mar 21, 2012 14:03
- 1 Respostas
- 1291 Exibições
- Última mensagem por LuizAquino

Sex Mar 23, 2012 11:05
Geometria Analítica
-
- Triangulo Retangulo
por ginrj » Qui Jun 04, 2009 18:56
- 1 Respostas
- 3417 Exibições
- Última mensagem por ginrj

Seg Jun 15, 2009 18:14
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.