• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração envolvendo vetores

Demonstração envolvendo vetores

Mensagempor VFernandes » Seg Mar 07, 2011 00:59

Olá amigos,
Não estou conseguindo resolver o seguinte exercício:
(Na minha notação, negrito quer dizer que trata-se de um vetor, ou seja, tem uma setinha em cima)

Num triângulo ABC é dado X sobre AB tal que ||AB||=2||XB|| e é dado Y sobre BC tal que ||BY||=3||YC||. Mostre que as retas CX e AY são concorrentes.
Sugestão: suponha que CX=\lambdaAY e deduza uma contradição.

O que eu fiz:
CX=\lambdaAY
BX - BC = \lambda(AB + BY)
BX - BC = \lambdaAB + \lambdaBY
-XB - BC = 3\lambdaXB + 3/4\lambdaBC
XB(3\lambda+1) + BC(3/4\lambda + 1) = 0

Não consegui pensar em mais nada além disso e não sei até que ponto isso é uma contradição... (seria porque, como ABC é, por hipótese, um triângulo, XB e BC não poderiam ser paralelos, já que X pertence a AB e AB é um dos lados adjacentes ao lado BC.)

Alguém teria alguma luz?
VFernandes
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 04, 2011 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)