• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Poliedros

Poliedros

Mensagempor Danilo » Sáb Set 01, 2012 21:11

Um poliedro convexo tem p faces triangulares, q faces quadrangulares e 8 vértices. Sabendo-se que a 6 de seus vértices concorrem q + 1 arestas e aos outros dois vértices concorrem p/2 arestas, determine o número de faces de cada tipo nesse poliedro.

Pessoal, eu tenho a resolução desse exercício. Estou aqui justamente para que alguém me ajude a entender um determinado trecho da resolução. Vou postar toda a resolução e vou mostrar depois o que eu não entendi.

'' O poliedro possui p faces triangulares e q faces quadrangulares. Disso vem: A = \frac{3p + 4q}{2}

Agora a parte que eu não entendi:

''Em 6 vértices concorrem (q+1) arestas e nos outros dois \frac{p}{2} arestas. Cada aresta esta contida em 2 vértices distintos, ou seja, essa expressão corresponde ao dobro da quantidade de arestas do poliedro .

6 (q+1) + 2(p/2) = 2A sendo A o número de arestas.

O que eu não entendi é justamente porque a expressão corresponde ao dobro do número de arestas e onde que ''e nos outros dois \frac{p}{2} arestas'' entra nessa história... Muito grato se puderem ajudar, pois não passei frente porque empaquei nisso.
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.