• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Area lateral?

Area lateral?

Mensagempor bmachado » Sáb Jun 23, 2012 17:09

Considere um cubo de aresta igual a 1 cm. Sejam ABCD e A’B’C’D’ duas faces opostas desse cubo. Podemos obter uma pirâmide tomando o quadrado ABCD como base e A’ como vértice. A área lateral dessa pirâmide mede: Resposta (1 + V2) Obrigado por colaborar c minha preparacao
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado

Re: Area lateral?

Mensagempor MarceloFantini » Dom Jun 24, 2012 03:57

O que você tentou?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Area lateral?

Mensagempor bmachado » Dom Jun 24, 2012 12:11

MarceloFantini escreveu:O que você tentou?

Bom dia, tentei de varias formas, a maiS legitma acreDito Ser;
H= altura da piramide= 1
s= semi reta Da baSe da altura ate a aresta vale 1/2
Por pitagoraS encontro q a h altura da face lateral vale V5/2, logo Area lateral=(Ab . h)/2=V5/4 X 4 q sao as 4 faces, encontra-se V5!?
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)