• Anúncio Global
    Respostas
    Exibições
    Última mensagem

volume de um sólido

volume de um sólido

Mensagempor Andreza » Seg Nov 14, 2011 14:26

Qual é o volume de um sólido gerado pela rotação de um triângulo eqüilátero de lado x, ao redor de um de seus lados? :-O

Este exercício eu não sei nem como começar.
Desde já agradeço!!!
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: volume de um sólido

Mensagempor LuizAquino » Sex Nov 18, 2011 10:25

Andreza escreveu:Qual é o volume de um sólido gerado pela rotação de um triângulo equilátero de lado x, ao redor de um de seus lados?


Andreza escreveu:Este exercício eu não sei nem como começar.


A figura abaixo ilustra o exercício.

rotação_triângulo_equilátero.png
rotação_triângulo_equilátero.png (4.96 KiB) Exibido 7763 vezes


Note que o sólido gerado é formado por dois cones unidos por uma mesma base.

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

volume de dois cones

Mensagempor Andreza » Qua Nov 23, 2011 17:08

Pra mim achar o volume de um sólido gerado pela rotação de um triangulo equilatero de lado x, ao redor de um de seus lados eu pesquisei a fórmula do volume do cone q é \Pix{r}^{3}\sqrt[]{3}/3 mas não tem o l pra mim substituir o lado do triangulo q é x. Qual outra fórmula eu uso?
Desde já agradeço.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: volume de um sólido

Mensagempor Andreza » Qua Nov 23, 2011 17:19

Mesmo com a figura não conseguir resolvê-lo. :idea:
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: volume de um sólido

Mensagempor LuizAquino » Qua Nov 23, 2011 20:05

Andreza escreveu:Pra mim achar o volume de um sólido gerado pela rotação de um triangulo equilatero de lado x, ao redor de um de seus lados eu pesquisei a fórmula do volume do cone q é \pi x{r}^{3}\sqrt{3}/3 mas não tem o l pra mim substituir o lado do triangulo q é x. Qual outra fórmula eu uso?


A fórmula geral para o volume V de um cone circular reto, de raio da base r e altura h, é dada por:

V = \frac{1}{3}\pi r^2 h

No caso particular onde o cone for gerado pela rotação de um triângulo equilátero em torno de sua altura, o volume desse cone será dado por:

V = \frac{1}{3}\pi r^3 \sqrt{3}, onde o raio da base r é correspondente a metade do lado do triângulo equilátero.

Note que no caso do exercício você vai precisar usar a fórmula geral.

Andreza escreveu:Mesmo com a figura não conseguir resolvê-lo. :idea:


rotação_triângulo_equilátero.png
rotação_triângulo_equilátero.png (6.2 KiB) Exibido 7731 vezes


Note que cada cone da figura tem raio da base igual a \frac{x\sqrt{3}}{2} (que corresponde a altura h do triângulo equilátero de lado x).

Já a altura de cada cone da figura é igual a \frac{x}{2}.

Usando essas informações você pode calcular o volume de cada um desses cones.

Note que o volume total corresponde a soma dos volumes de cada cone.

Agora tente terminar o exercício.
Editado pela última vez por LuizAquino em Qui Nov 24, 2011 22:57, em um total de 1 vez.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: volume de um sólido

Mensagempor Andreza » Qui Nov 24, 2011 10:45

Colocando na fórmula substituindo r por x raiz de 3 dividido por 2 eu encontrei o volume de um cone igual a 3pi x elevado a terceira dividido por 8. Multiplicando o resultado por 2 = 3pi x elevado a terceira dividido por 4. Está correto? Agradeço a ajuda.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: volume de um sólido

Mensagempor LuizAquino » Qui Nov 24, 2011 22:56

Andreza escreveu:Colocando na fórmula substituindo r por x raiz de 3 dividido por 2 eu encontrei o volume de um cone igual a 3pi x elevado a terceira dividido por 8. Multiplicando o resultado por 2 = 3pi x elevado a terceira dividido por 4. Está correto?


Note que:

V = \frac{1}{3}\pi \left(\frac{x\sqrt{3}}{2}\right)^2\frac{x}{2} \Rightarrow V = \frac{\pi x^3}{8}

O volume total será então dado por:

V_{\textrm{Total}} = 2V \Rightarrow V_{\textrm{Total}} = \frac{\pi x^3}{4}

Observação

Eu recomendo que você leia o tópico:

DICA: Escrevendo Fórmulas com LaTeX via BBCode
viewtopic.php?f=9&t=74
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: volume de um sólido

Mensagempor Andreza » Sex Nov 25, 2011 10:05

Eu substitui na outra fórmula quando o cone é gerado pela rotação de triangulo equilátero ( eu tinha entendido q era pra usar a outra neste caso particular). Te agradeço muito pela ajuda. Deus te abençoe muito. Desculpe por nao ter utilizado o latex para colocar as fórmulas, essas não consegui colocar lá. Vou ler o tópico q vc indicou e prometo melhorar.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.