• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cilindro e esfera

Cilindro e esfera

Mensagempor karol-1901 » Qui Out 07, 2010 18:30

Considere um retângulo de altura h e base b e duas circunferências com diâmetro h e centros nos lados do retângulo, conforme a figura a seguir. Seja z um eixo que passa pelo centro destas circunferencias. Calcule a area do solido gerado pela rotação da região hachurada em torno do eixo z

http://oi55.tinypic.com/351dgcx.jpg

eu tentei faze a area lateral do cilindro menos a area da esfera, mas não deu certo. Não sei se este meu pensamento esta certo por favor me ajudem.

GABARITO : \pi h (b + h)
karol-1901
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Out 07, 2010 17:51
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Cilindro e esfera

Mensagempor alexandre32100 » Sex Out 08, 2010 13:20

De fato, este sólido seria um cilindro com duas semi esferas nas bases. Veja que esta duas semiesferas somadas têm a área de uma das esferas de raio \dfrac{h}{2}, ou seja A_{cavidades}=\dfrac{4\cdot\pi\cdot h^2}{2^2}. Por outro lado, a área do sólido se dá por A_t=A_{cilindro}+A_{cavidades} ou
A_t=\dfrac{2\pi\cdot h\cdot b}{2}+\dfrac{4\cdot\pi\cdot h^2}{2^2}=\pi \cdot h \cdot b+\pi\cdot h^2=\pi\cdot h\cdot (b + h)
alexandre32100
 

Re: Cilindro e esfera

Mensagempor karol-1901 » Sex Out 08, 2010 14:34

ahh
entendi
vlw
muito obrigada
karol-1901
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Out 07, 2010 17:51
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59