• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exrc.resolvido

exrc.resolvido

Mensagempor adauto martins » Sáb Nov 23, 2019 10:15

(ITA-exame 1953 )

calcular o volume do solido gerado por um triangulo retangulo isosceles,cujos catetos medem 3m,ao girar em torno da paralela
a hipotenusa traçada pelo vertice do angulo reto.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 989
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exrc.resolvido

Mensagempor adauto martins » Sáb Nov 23, 2019 11:54

soluçao´
vamos tomar para melhor visualizaçao os eixos´coordenadós,e o vertice do triangulo em questao com o angulo reto na origem,entao teremos o ´triangulo ÁBC,onde A e a origem do sistema x-y...
temos pelio teorama de pelo teoremma de papus

{v}_{rev.}=\theta.x.{Ã}_{fig.}

onde \theta´ angulo de rotaçao ´

x a distancia ´do centro de gravidade(no caso o baricentro do triangulo,ou da fígura plana)

{Ã}_{(fig.)}´ que em nosso casso,sera

{Ã}_{fig.}=(3.3)/2=9/2

o problema se resume em achar x...

o x em nosso caso´,sera o baricentro do triangulo(figura),como sabemos o baricentro´(encontro das medianas) fica
1/3 da base e
2/3 do vertice.em nosso caso o triangulo girara em tórno da paralela a hipotenusa,passando pela origem A do sistema,entao
x=(2/3)AM
onde AM´é a mediana que parte da origem A,e divide a hipotenusa áo meio...
como o nosso triang.retanguloé ísosceles,termos

´h=\sqrt[]{({3}^{2}+{3}^{2})}=3\sqrt[]{2}´

AM=BD=DC=(1/2)h=(1/2)3.\sqrt[]{2}´

pois sendo ABC isosceles,os catetos dos 2 triang. menores teráo mesmo valor,logo

x=(2/3)AM=(2/3).(1/2)3.\sqrt[]{2}=\sqrt[]{2}´

portanto

{v}_{rev.}=\theta.x.A=2.\pi.\sqrt[]{2}.(9/2)=9\pi\sqrt[]{2}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 989
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?


cron