Bom dia! Gostaria de ajuda para esclarecer a seguinte dúvida:
O exercício diz: "Quantos hexágonos e pentágonos há na bola clássica de futebol ?"
Consideremos h o número de hexágonos e p, o de pentágonos. Assim, está claro que h + p = F, onde F é o número de faces do poliedro. Como definição de poliedro, temos que cada aresta é comum a dois polígonos. Logo, se A é o número de arestas do poliedro, então A = (6h + 5p)/2, uma vez que a cada hexágono temos 6 arestas e, a cada pentágono, 5 arestas. Por outro lado, a questão é o número de vértices do poliedro. Seja V esse número. A resolução diz que V = (6h + 5p)/3, mas não consegui entender. Qual a razão para dividirmos por três? Está claro que na contagem de 6 vértices para cada hexágono e 5, para cada pentágono, teríamos vértices a mais. Logo, devemos tirar os repetidos, porém não entendi porque o 3.
Muito Obrigada!

![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)