• Anúncio Global
    Respostas
    Exibições
    Última mensagem

geometria

geometria

Mensagempor zenildo » Ter Mai 07, 2013 17:42

Se o comprimento do raio de um circulo é aumentado em 30% de seu valor, então a sua área aumenta em:

a) 60%
b)69%
c)80%
d)35%
e)45%
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: geometria

Mensagempor Luis Gustavo » Ter Mai 07, 2013 18:58

Vamos chamar as duas circunferências de C_1 e C_2, tal que C_1=2\pi r_1 e C_2=2\pi r_2. O comprimento de C_2 é 30% maior que o de C_1, ou seja, o comprimento de C_2 é igual a 130% do comprimento de C_1. Podemos escrever isso da seguinte forma:

C_2=1,3\timesC_1

Ou ainda:

2\pi r_2=1,3 \times 2\pi r_1

E disso decorre que:

2\pi r_2=1,3 \times 2\pi r_1

2\times\pi \times r_2=1,3 \times 2\times\pi \times r_1

r_2=\dfrac{1,3 \times\not2\times\not\pi \times r_1}{\not2\times\not\pi}

r_2=1,3\times r_1

Mas tudo o que fizemos foi provar que, se o comprimento de C_2 é 30% maior que o de C_1, o raio de C_2 também é 30% maior que o raio de C_1. Agora amos ver qual a relação entre as áreas de C_1 e C_2:

A área de C_1 é igual a \pi {r_{1}}^2.

A área de C_2 é igual a \pi {r_{2}}^2. Mas como r_2=1,3r_1, a área de C_2 é igual a:

\pi {(1,3r_{1}})^2=\pi\times{1,3}^2\times{r_1}^2=1,69\times\pi {r_{1}}^2

Ou seja, a área de C_2 é exatamente igual a 169% da área de C_1, isto é, a área de C_2 é 69% maior que a área de C_1.


Resposta: b)69%.


Espero ter ajudado.
Att, Luis Gustavo.
Luis Gustavo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Mai 06, 2013 15:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}