• Anúncio Global
    Respostas
    Exibições
    Última mensagem

geometria espacial

geometria espacial

Mensagempor marina jose » Seg Fev 20, 2012 10:41

Como faço para determinar o numero de diagonais sem contar as diagonais de cada face??? !!!!
marina jose
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Fev 17, 2012 17:42
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: geometria espacial

Mensagempor LuizAquino » Seg Fev 20, 2012 12:43

marina jose escreveu:Como faço para determinar o numero de diagonais sem contar as diagonais de cada face???


Suponha que o poliedro tenha v vértices e a arestas. Além disso, suponha que contando todas as diagonais das faces, obtemos um total de d diagonais.

Para calcular o número de diagonais sem considerar aquelas que estão sobre as faces, basta efetuar a operação:

\frac{v(v-1)}{2} - a - d
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: geometria espacial

Mensagempor vanessa_mat » Qua Fev 22, 2012 17:40

LuizAquino escreveu:
marina jose escreveu:Como faço para determinar o numero de diagonais sem contar as diagonais de cada face???


Suponha que o poliedro tenha v vértices e a arestas. Além disso, suponha que contando todas as diagonais das faces, obtemos um total de d diagonais.

Para calcular o número de diagonais sem considerar aquelas que estão sobre as faces, basta efetuar a operação:

\frac{v(v-1)}{2} - a - d



Estou tentando entender o problema das diagonais, mas essa fórmula, não conhecia...como faço para conseguir entender o problema??
vanessa_mat
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Seg Nov 21, 2011 16:58
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: geometria espacial

Mensagempor LuizAquino » Qua Fev 22, 2012 22:36

vanessa_mat escreveu:Estou tentando entender o problema das diagonais, mas essa fórmula, não conhecia...como faço para conseguir entender o problema??


Dica
Note que escolhendo-se dois vértices distintos, podemos formar um dos três elementos:
(i) uma aresta;
(ii) uma diagonal sobre a face;
(iii) uma diagonal fora da face.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.