• Anúncio Global
    Respostas
    Exibições
    Última mensagem

aresta da base - piramide

aresta da base - piramide

Mensagempor DCristina » Qua Mai 19, 2010 00:24

Seja uma piramide hexagonal regular com apotema de base igual a (x+4) cm e altura igual a (3x-3)cm. Se o volume desta piramide é igual a 648\sqrt[2]{3} cm³, então o lado da base mede, em cm....

Tenho pensando neste exercicio há uns dois dias, porém não consigo concluí-lo...

Primeiramente utilizo a formula do cálculo de volume de uma piramide, substituindo os dados do problema e obtenho a seguinte equação:
{l}^{2}=\frac{1296}{3x-3}
na proxima etapa de resolução, utilizo o valor do lado elevado ao quadrado na idéia da relação entre apótema e lado do hexagono regular:
{l}^{2}={(l/2)}^{2}+{a}^{2}
aí então recaio numa equação de terceiro grau e não concluo nada...

solicito e agradeço as ajudas prestadas

Cristina
DCristina
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Mai 18, 2010 23:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matematica
Andamento: formado

Re: aresta da base - piramide

Mensagempor Adriano Tavares » Dom Jan 01, 2012 20:26

Olá,DCristina.

aresta da base - piramide.gif
aresta da base - piramide
aresta da base - piramide.gif (6.29 KiB) Exibido 3404 vezes


Sendo a base um hexágono regular, ele é formado por seis triângulos equiláteros.Note que o apótema é igual a altura do triângulo equilátero.

x+4=\frac{l\sqrt{3}}{2} \Rightarrow  l=\frac{2x+8}{\sqrt{3}} \Rightarrow l^2=\frac{4x^2+32x+64}{3}

x=\frac{l\sqrt{3}-8}{2}

V_p=\frac{1}{3}A_b.h \Rightarrow 648\sqrt{3}=\frac{1}{3}.6.\frac{l^2\sqrt{3}}{4}.h \Rightarrow 648\sqrt{3}=\frac{1}{2}l^2\sqrt{3}.h \Rightarrow l^2.h=1296

Substituindo os valores de l e h teremos:

(\frac{4x^2+32x+64}{3}).3(x-1)=1296 \Rightarrow 4x^3+32x^2+64x-4x^2-32x-64=1296

4x^3+28x^2+32x-1360=0 \Rightarrow x^3+7x^2+8x-340=0

Fazendo-se uma pesquisa verifica-se que 5 é uma raiz do polinômio.

l=\frac{2x+8}{\sqrt{3}} \Rightarrow l=\frac{2.5+8}{\sqrt{3}} \Rightarrow l=6\sqrt{3}
Adriano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Mar 07, 2011 16:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo em automação industrial
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: