por Andreza » Sáb Nov 12, 2011 10:02
Considere uma caixa d’água retangular, de base quadrada. De um dos vértices da base, A, marcamos AB=2m sobre a aresta lateral que contém A. Escolha qualquer uma das faces laterais que não contém AB e marque sobre ela o ponto P, interseção das diagonais dessa face. A medida de BP é 10m. BP tem uma inclinação de 30° em relação à base da caixa. Qual o volume da caixa?
Eu já tentei nao consegui nem o desenho coerente.
Qualquer dica é bem vinda.
Obrigada.
Aguardo resposta.
-
Andreza
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Sáb Out 22, 2011 11:10
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Licenc. Plena Matemática
- Andamento: formado
por LuizAquino » Qui Nov 17, 2011 22:16
Andreza escreveu:Considere uma caixa d’água retangular, de base quadrada. De um dos vértices da base, A, marcamos AB=2m sobre a aresta lateral que contém A. Escolha qualquer uma das faces laterais que não contém AB e marque sobre ela o ponto P, interseção das diagonais dessa face. A medida de BP é 10m. BP tem uma inclinação de 30° em relação à base da caixa. Qual o volume da caixa?
Andreza escreveu:Eu já tentei nao consegui nem o desenho coerente.
A figura abaixo (fora de escala) ilustra o exercício. Considere que os lados da base medem
a.

- caixa.png (13.13 KiB) Exibido 1674 vezes
Andreza escreveu:Qualquer dica é bem vinda.
Obrigada.
Aguardo resposta.
Note que:
- BQP é um triângulo retângulo;
- BQ é paralelo a AR;
- ASR é um triângulo retângulo;
- PR é equivalente a metade da altura da caixa.
Agora tente resolver o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Volume] Volume de caixa para carrinho de mão
por MateusDantas1 » Seg Nov 05, 2012 20:12
- 0 Respostas
- 2657 Exibições
- Última mensagem por MateusDantas1

Seg Nov 05, 2012 20:12
Geometria Espacial
-
- paralelepipedo retangular
por pedro martins » Sáb Jun 02, 2012 15:37
- 0 Respostas
- 1481 Exibições
- Última mensagem por pedro martins

Sáb Jun 02, 2012 15:37
Geometria Espacial
-
- [Área de terreno retangular]
por Gustavo Gomes » Ter Nov 12, 2013 19:38
- 0 Respostas
- 879 Exibições
- Última mensagem por Gustavo Gomes

Ter Nov 12, 2013 19:38
Álgebra Elementar
-
- Uma instituição tem seu terreno retangular limitado...
por ativirginis » Qui Fev 23, 2012 13:24
- 1 Respostas
- 1361 Exibições
- Última mensagem por timoteo

Qui Fev 23, 2012 15:43
Funções
-
- Prove que um caixa eletrônico...
por Aliocha Karamazov » Sáb Jun 18, 2011 22:36
- 4 Respostas
- 2525 Exibições
- Última mensagem por Molina

Qua Jun 22, 2011 00:11
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.