• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Pirâmides

Pirâmides

Mensagempor marry » Qua Nov 09, 2011 07:43

Olá, pessoal!

Estou cursando Química e dando aulas de matemática, isto é: tendo que estudar demaaaaaaaaais.
Meu Ensino Médio foi precário e agora tenho que ralar muito pra aprender e ensinar bem, este é o meu propósito. Estou com muita dificuldade em resolver alguns exercícios sobre pirâmides, então vou postá-los aqui e se alguém puder me ajudar, ficarei muito agradecida.


1)Determine a altira de uma pirâmide cuja área da base é B dm². Sabe-se que a secção transversal desta pirâmide está a 8 dm da base e a sua área é 1/4 da área da base.

2)Uma secção paralela à base feita a 3 cm do vértice tem área igual a 1/3 da área da base. Qual a altura da pirâmides em cm ?

3)(PUC- SP) Uma pirâmide tem 10 dm² de base e 2 m de altura. A distância da base a que se deve tração um plano paralelo para que a secção seja 1/5 da base é?

Acredito que com estes três consigo fazer os outros 21 ( :-O ) e ensinar pros meus meninos da melhor forma possível.


Se precisarem de ajuda em Química, me mandem msg que se estiver ao meu alcance, ficarei muito feliz em poder ajudar.
marry
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Nov 09, 2011 07:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Química
Andamento: cursando

Re: Pirâmides

Mensagempor Adriano Tavares » Dom Jan 01, 2012 16:55

Olá,marry.

a)

Pirâmides.gif
Pirâmides.gif (3.17 KiB) Exibido 4525 vezes



Sendo a razão de áreas de figuras semelhantes igual ao quadrado razão de semelhança teremos:

b=\frac{B}{4}

\frac{\frac{B}{4}}{B}=(\frac{x}{x+8})^2 \Rightarrow \frac{1}{4}=(\frac{x}{x+8})^2 \Rightarrow \frac{x}{x+8}=\sqrt{\frac{1}{4}} \Rightarrow \frac{x}{x+8}=\frac{1}{2} \Rightarrow x=8 \tex{dm}

h=x+8 \Rightarrow h=8+8 \Rightarrow h=16 \tex{dm}

b)

\frac{\frac{B}{3}}{B}=(\frac{3}{h})^2 \Rightarrow \frac{1}{3}=\frac{9}{h^2} \Rightarrow h^2=27 \Rightarrow h=3\sqrt{3} \tex{cm}

C)

Pirâmides.gif
Pirâmides.gif (3.34 KiB) Exibido 4525 vezes



2m \Rightarrow 20 \tex{dm}

\frac{1}{5}=(\frac{x}{20})^2 \Rightarrow  \frac{1}{5}=\frac{x^2}{400 } \Rightarrow 5x^2=400 \Rightarrow x^2=80 \Rightarrow x=4\sqrt{5} \tex{dm}

d=20-x \Rightarrow d=20-4\sqrt{5} \Rightarrow d=4(5-\sqrt{5}) \tex{dm}
Adriano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Mar 07, 2011 16:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo em automação industrial
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?