• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vetores

Vetores

Mensagempor Danilo » Seg Out 08, 2012 12:57

Decomponha W = (-1,-3,2) como a soma de dois vetores W1 e W2, com W1 paralelo ao vetor (0,1,3) e W2 ortogonal a este último.

Bom, me deram a sugestão de usar a projeção para resolver...

Bom, sei que W1 = x(0,1,3) x real. e sei que W2 escalar (0,1,3) = 0 Mas não consigo aplicar essas informações para resolver.... Grato a quem puder dar uma luz!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Vetores

Mensagempor young_jedi » Seg Out 08, 2012 16:24

Se o vetor W é a soma de outros dois vetores e eles são ortogonais, então o vetor W1 é a projeção do vetor W sobre o vetor
V=(0,1,3).

temos então que

V.W=|V||W|cos\theta

mais

|W1|=|W|cos\theta

com isso acha-se o modulo de W1 e tendo o seu modulo e sua direção então acha-se o suas coordenadas.

como W1 esta na direção de V então

W1=\frac{|W1|.V}{|V|}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Vetores

Mensagempor LuizAquino » Ter Out 09, 2012 12:32

Danilo escreveu:Decomponha W = (-1,-3,2) como a soma de dois vetores W1 e W2, com W1 paralelo ao vetor (0,1,3) e W2 ortogonal a este último.

Bom, me deram a sugestão de usar a projeção para resolver...

Bom, sei que W1 = x(0,1,3) x real. e sei que W2 escalar (0,1,3) = 0 Mas não consigo aplicar essas informações para resolver.... Grato a quem puder dar uma luz!


Como você mesmo percebeu, temos que \vec{w}_1 = x(0,\,1,\,3), com x um número real.

Calcule então a projeção de \vec{w} em \vec{v}= (0,\,1,\,3). Escolha chamar essa projeção de \vec{w}_1 . Note que essa escolha é condizente com os dados do exercício, pois a projeção de \vec{w} em \vec{v} é paralelo a \vec{v} .

Em seguida, determine \vec{w}_2 através da relação:

\vec{w}_2 = \vec{w} - \vec{w}_1

Para entender esse desenvolvimento, vide a figura abaixo.

figura.png
figura.png (4.18 KiB) Exibido 7465 vezes
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Vetores

Mensagempor Danilo » Sex Out 12, 2012 13:40

Muito obrigado!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: