• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Distância entre ponto e bissetriz dos quadrantes pares

Distância entre ponto e bissetriz dos quadrantes pares

Mensagempor flaaacs » Qua Out 03, 2012 16:01

Seja P um ponto de abscissa positiva, o ponto de intersecção entre a circunferência de equação x^2 +y^2 -2x -2y -7=0 e a reta de equação y-x-3=0. A distância entre o ponto P e a bissetriz dos quadrantes pares é:
Resposta oficial: 5V2/2
(Cinco raiz de dois sobre dois)
flaaacs
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Out 03, 2012 15:58
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Distância entre ponto e bissetriz dos quadrantes pares

Mensagempor LuizAquino » Qua Out 03, 2012 17:01

flaaacs escreveu:Seja P um ponto de abscissa positiva, o ponto de intersecção entre a circunferência de equação x^2 +y^2 -2x -2y -7=0 e a reta de equação y-x-3=0. A distância entre o ponto P e a bissetriz dos quadrantes pares é:
Resposta oficial: 5V2/2
(Cinco raiz de dois sobre dois)


Para determinar a interseção entre a circunferência e a reta, você precisa resolver o sistema:

\begin{cases}
x^2 + y^2 - 2x - 2y - 7 = 0 \\
y - x - 3 = 0
\end{cases}

Após resolver esse sistema (por exemplo, por substituição), você irá determinar dois pontos de interseção. O ponto P será aquele que tiver abscissa positiva (ou seja, coordenada x positiva).

Em seguida, você precisa calcular a distância do ponto P até a reta que contém a bissetriz dos quadrantes pares. A equação dessa reta é dada por y = -x (ou seja, x + y = 0). Para calcular essa distância, lembre-se do seguinte: se você tem o ponto P = (x_0, y_0) e a reta r\,:\,ax+by+c = 0, então a distância entre P e r (que aqui vamos representar por d(P, r)), será dada pela fórmula:

d(P,\,r) = \frac{|ax_0+by_0+c|}{\sqrt{a^2 + b^2}}

Agora tente concluir o exercício.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.